实验动物与比较医学 ›› 2025, Vol. 45 ›› Issue (6): 705-718.DOI: 10.12300/j.issn.1674-5817.2025.106

• 无脊椎实验动物:果蝇 • 上一篇    下一篇

黑腹果蝇心侧体功能的研究概述

王晗玥1(), 陈嘉玮1, 高湘滨1, 罗威1,2(), 刘素宁1,2()   

  1. 1.华南师范大学生命科学学院, 广州 510631
    2.广东省昆虫发育生物学与技术重点实验室, 广州 510631
  • 收稿日期:2025-07-02 修回日期:2025-08-19 出版日期:2025-12-25 发布日期:2025-12-19
  • 通讯作者:

    刘素宁(1987—),男,博士,研究员,研究方向:昆虫发育机制探究。E-mail: liusuning@scnu.edu.cn。ORCID:0009-0007-7778-7891

    罗威(1990—),男,博士,副研究员,研究方向:昆虫激素合成调控。E-mail: luowei@m.scnu.edu.cn。ORCID:0000-0002-0698-3066

  • 作者简介:王晗玥(2000—),女,硕士研究生,研究方向:心侧体功能基因探究。E-mail: 629301471@qq.com。ORCID:0009-0005-7447-0296
  • 基金资助:
    国家自然科学基金资助项目“昆虫保幼激素”(32222013);广东省基础与应用基础研究基金资助项目“昆虫保幼激素合成关键酶基因的转录调控机制”(2022B1515020043)

Research Overview on Corpora Cardiaca Function of Drosophila melanogaster

WANG Hanyue1(), CHEN Jiawei1, GAO Xiangbin1, LUO Wei1,2(), LIU Suning1,2()   

  1. 1.School of Life Sciences, South China Normal University, Guangzhou 510631, China
    2.Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou 510631, China
  • Received:2025-07-02 Revised:2025-08-19 Published:2025-12-25 Online:2025-12-19
  • Contact: LIU Suning (ORCID:ORCID:0009-0007-7778-7891), E-mail: liusuning@scnu.edu.cn;
    LUO Wei(ORCID:0000-0002-0698-3066), E-mail: luowei@m.scnu.edu.cn

摘要:

本文以黑腹果蝇(Drosophila melanogaster)心侧体(corpora cardiaca)为轴心,构建“发育—分泌—调控—功能”四维框架,系统梳理了其在糖代谢稳态中的核心作用。果蝇遗传工具成熟、基因与人类高度同源,是研究能量平衡的理想模型;心侧体与胰岛素合成细胞(insulin-producing cells,IPCs)分别对应脊椎动物胰腺α/β细胞,通过类胰高血糖素-脂动激素(adipokinetic hormone,AKH)和果蝇胰岛素样肽(Drosophila insulin-like peptides,DILPs)共同调控血淋巴葡萄糖和海藻糖的浓度。本文首先论述了心侧体的发育过程:心侧体起源于头部中胚层,经胚胎定型、幼虫扩增、蛹期重塑和成虫融合等过程,最终形成环绕食管的双叶结构;sine oculis、glass、Notch、dpp、hh等基因和信号通路以严格的时空模式控制该过程,其中任一节点突变均会导致心侧体缺失或功能缺陷。心侧体可以接受来自外部的调控,整合营养物质、脑-肠分泌因子等多重输入。饥饿时,细胞表面的葡萄糖感受器可直接感知低血糖并促进AKH释放;肠内分泌细胞通过抑咽侧体神经肽A(allatostatin A,AstA)、鞣化激素α(bursicon α)、神经肽F(neuropeptide F,NPF)等肽类对心侧体施加正/负反馈;脑多巴胺(dopamine,DA)、色素趋散因子(pigment-dispersing factor,PDF)与DILP1/2形成神经-内分泌拮抗,以精细调节AKH的释放。心侧体主要释放三类分子:AKH经AKH受体(adipokinetic hormone receptor,AKHR)-环磷酸腺苷(cyclic adenosine monophosphate,cAMP)-蛋白激酶A(protein kinase A,PKA)途径动员脂肪体糖原与甘油三酯;抑胰岛素激素(limostatin,Lst)经其受体抑制IPCs分泌DILPs;胰岛素拮抗剂蛋白2(imaginal morphogenesis protein-late 2,ImpL2)拮抗DILPs并抑制雷帕霉素靶标(target of rapamycin,TOR)通路,从而耦合营养状态与发育进程。AKH/AKHR轴在饥饿、高脂或热胁迫下驱动糖/脂动用及觅食亢进;促前胸腺激素(prothoracicotropic hormone,PTTH)与ImpL2介导心侧体-前胸腺轴,确保临界体重后蜕皮激素适时释放;心侧体轴突支配嗉囊,调节排空速率;AKH-叉头盒蛋白O(forkhead box O,FoxO)-小腹侧神经元(small ventral lateral neurons,s-LNv)环路抑制饥饿诱导的睡眠丧失,维持昼夜稳态。本文综述了心侧体的发育机制、分泌激素的作用机制以及与其他组织的相互作用,不仅有助于学者对昆虫能量稳态的调控机制的理解,还能为无脊椎动物代谢紊乱和相关疾病研究提供新的思路和靶点。

关键词: 黑腹果蝇, 新陈代谢, 心侧体, 脂动激素, 调控

Abstract:

Taking the corpora cardiaca (CC) of Drosophila melanogaster as the central focus, this review establishes a four-dimensional framework of "development-secretion-regulation-function" to systematically summarize the core role of CC in glucose metabolic homeostasis. Drosophila has a mature genetic toolkit and high gene homology with humans, making it an ideal model for studying energy balance. CC and insulin-producing cells (IPCs) correspond to vertebrate pancreatic α/β cells respectively, jointly regulating hemolymph glucose and trehalose concentrations through adipokinetic hormone (AKH) and Drosophila insulin-like peptides (DILPs). This review first discusses developmental process of CC: it originates from head mesoderm, undergoes embryonic specification, larval expansion, pupal remodeling, and adult fusion, ultimately forming a bilobed organ surrounding the esophagus. Genes and signaling pathways such as sine oculis, glass, Notch, dpp, and hh control this process in a strict spatiotemporal pattern, and a mutation at any node can cause CC absence or functional defects. CC can receive external regulation, integrating multiple inputs including nutrients and brain-gut secretory factors. During starvation, cell-surface glucose sensors directly sense hypoglycaemia and increase AKH secretion. Enteroendocrine cells exert positive/negative feedback on CC through peptides such as allatostatin A (AstA), bursicon α, and neuropeptide F (NPF). Brain dopamine (DA), pigment-dispersing factor (PDF), and DILP1/2 form neuroendocrine antagonism to precisely regulate AKH release. The CC mainly secretes three types of molecules: AKH mobilizes glycogen and triacylglycerol in the fat body via the adipokinetic hormone receptor (AKHR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway. Limostatin (Lst) inhibits DILP secretion from IPCs via its receptor. Insulin antagonist protein 2 (imaginal morphogenesis protein-late 2, ImpL2) antagonizes DILPs and inhibits the target of rapamycin (TOR) pathway, thereby coupling nutritional status with developmental process. The AKH/AKHR axis drives sugar/lipid mobilization and foraging hyperactivity under starvation, high-fat, or heat stress. Prothoracicotropic hormone (PTTH) and ImpL2 mediate CC–prothoracic gland axis to ensure timely ecdysone release after the critical weight. CC axons innervate the crop, regulating emptying rate. AKH-forkhead box O (FoxO)-small ventral lateral neurons (s-LNv) circuit inhibits starvation-induced sleep loss, maintaining circadian homeostasis. This review summarizes the developmental mechanisms of CC, action mechanisms of secreted hormones, and interactions with other tissues, which not only helps scholars understand regulatory mechanisms of insect energy homeostasis, but also provides novel perspectives and targets for research on metabolic disorders and related diseases in invertebrates.

Key words: Drosophila melanogaster, Metabolism, Corpora cardiaca, Adipokinetic hormone, Regulation

中图分类号: