实验动物与比较医学

• •    

模式生物黑腹果蝇心侧体功能的研究概述

王晗玥1(), 陈嘉玮1, 高湘滨1, 罗威1,2()(), 刘素宁1,2()()   

  1. 1.华南师范大学生命科学学院, 广州 510631
    2.广东省昆虫发育生物学与技术重点实验室, 广州 510631
  • 出版日期:2025-09-01
  • 通讯作者: 罗威(1990—),男,博士,副研究员,研究方向:昆虫激素合成调控。E-mail: luowei@m.scnu.edu.cn。ORCID:0000-0002-0698-3066;
    刘素宁 宁(1987—),男,博士,研究员,研究方向:昆虫发育机制探究。E-mail: liusuning@scnu.edu.cn。ORCID:0009-0007-7778-7891
  • 作者简介:王晗玥(2000—),女,硕士研究生在读,研究方向:心侧体功能基因探究。E-mail: 629301471@qq.com。ORCID:0009-0005-7447-0296
    罗威,博士,副研究员,硕士生导师。本科毕业于湖北大学,之后在华南师范大学获得博士学位,并于华南师范大学完成博士后研究工作,后留校在华南师范大学生命科学学院昆虫科学与技术研究所工作。长期从事果蝇变态与生殖发育的激素调控机制研究工作。近年来以果蝇雌虫卵巢和雄性附性腺为实验材料,探究激素信号、生长信号等对生殖系统发育、成熟以及昆虫行为的调控作用,以第一作者在PNAS,Insect Science,Insect Molecular Biology等国际知名期刊发表多篇论文。先后主持国家自然科学基金面上项目、青年项目,广东省自然科学基金面上项目和中国博士后科学基金项目等。担任中国昆虫学会生理生化与分子生物学专业委员会委员。
    刘素宁,博士,研究员。本科毕业于河北农业大学,之后在中国农业大学获得博士学位,并先后于中国科学院上海生命科学院和华南师范大学完成博士后研究工作。2018年任职于华南师范大学生命科学学院昆虫科学与技术研究所。长期从事果蝇变态发育方面的研究工作,近年来主要开展昆虫保幼激素与蜕皮激素的合成及相互作用的研究。获得国家自然科学基金优青项目、面上项目、青年基金项目,广东省科学基金杰青项目、面上项目,广州市科技计划项目,博士后科学基金面上项目等基金资助。在Nature Communications、PNAS(2018、2020、2021、2025)、Science Bulletin、Insect Biochemistry and Molecular Biology、Insect Science等发表论文二十余篇。以第二完成人身份获得2020年度广东省自然科学奖一等奖。担任中国昆虫学会发育与遗传专业委员会、青年工作委员会委员,中国动物学会比较内分泌学专业委员会委员等。Email: liusuning@scnu.edu.cn ORCID:0009-0007-7778-7891 刘素宁(1987—),男,博士,研究员,研究方向:昆虫发育机制探究。E-mail:。ORCID:0009-0007-7778-7891
  • 基金资助:
    国家自然科学基金“昆虫保幼激素”(32222013);广东省基础与应用基础研究基金“昆虫保幼激素合成关键酶基因的转录调控机制”(2022B1515020043)

Research Overview on Corpora Cardiaca Function of Model Animal Drosophila melanogaster

WANG Hanyue1(), CHEN Jiawei1, GAO Xiangbin1, LUO Wei1,2()(), LIU Suning1,2()()   

  1. 1.School of Life Sciences, South China Normal University, Guangzhou 510631, China
    2.Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou 510631, China
  • Published:2025-09-01
  • Contact: LIU Suning(ORCID:ORCID:0009-0007-7778-7891), E-mail: liusuning@scnu.edu.cn;

摘要:

本文以黑腹果蝇(Drosophila melanogaster)心侧体(corpora cardiaca,CC)为轴心,构建“发育—分泌—调控—功能”四维框架,系统梳理其在糖代谢稳态中的核心作用。果蝇遗传工具成熟、基因与人高度同源,是研究能量平衡的理想模型;心侧体与胰岛素合成细胞(insulin-producing cells,IPCs)分别对应脊椎动物胰腺α/β细胞,通过脂动激素(adipokinetic hormone,AKH)和胰岛素样肽(Drosophila insulin-like peptides,DILPs)共同调控血淋巴葡萄糖和海藻糖浓度。本文首先论述心侧体的发育过程:其起源于头部中胚层,经胚胎定型、幼虫扩增、蛹期重塑和成虫融合,形成环绕食管的双叶结构;sine oculis、glass、Notch、dpp、hh等基因和信号通路以严格的时空模式控制该过程,任一节点突变均会导致心侧体缺失或功能缺陷。心侧体可以接受来自外部的调控,整合营养、肠、脑多重输入。饥饿时,细胞表面葡萄糖感受器直接感知低血糖并促进AKH释放;肠内分泌细胞通过AstA、Bursicon α、NPF等肽类对心侧体施加正/负反馈;脑多巴胺、PDF与DILP1/2形成神经-内分泌拮抗,精细调节AKH释放。心侧体主要释放三类分子:①AKH经AKHR-cAMP-PKA途径动员脂肪体糖原与甘油三酯;②抑胰岛素激素(limostatin,Lst)经其受体抑制IPCs分泌DILPs;③胰岛素拮抗剂蛋白(imaginal morphogenesis protein-late 2,ImpL2)拮抗DILPs并抑制雷帕霉素靶标(target of rapamycin,TOR)通路,从而耦合营养状态与发育进程。AKH/AKHR轴在饥饿、高脂或热胁迫下驱动糖脂动用及觅食亢进;促前胸腺激素(prothoracicotropic hormone,PTTH)与ImpL2介导心侧体-前胸腺轴,确保临界体重后蜕皮激素适时释放;心侧体轴突支配食囊,调节排空速率;AKH-FoxO-s-LNv环路抑制饥饿诱导的睡眠丧失,维持昼夜稳态。本文综述了心侧体的发育机制、分泌激素的作用机制以及与其他组织的相互作用,其研究不仅有助于理解昆虫能量稳态的调控机制,还能为脊椎动物代谢紊乱和相关疾病的研究提供新的思路和靶点。

关键词: 黑腹果蝇, 新陈代谢, 心侧体, 脂动激素

Abstract:

Using the corpora cardiaca (CC) of Drosophila melanogaster as the central focus, this review establishes a four-dimensional framework—development, secretion, regulation, and function—to systematically summarize the pivotal role of the CC in glucose homeostasis. We first emphasize that Drosophila, owing to its sophisticated genetic toolkit and extensive gene homology with humans, constitutes an ideal model for studying energy balance. The CC and the insulin-producing cells (IPCs) are considered functional counterparts of the vertebrate pancreatic α- and β-cells, respectively, and jointly modulate haemolymph glucose and trehalose levels via the counter-regulatory hormones adipokinetic hormone (AKH) and Drosophila insulin-like peptides (DILPs). We begin by detailing CC ontogeny: the structure originates in the head mesoderm, undergoes embryonic specification, larval expansion, pupal remodelling, and adult fusion, ultimately forming a bilobed organ encircling the oesophagus. Precise spatiotemporal signalling by sine oculis, glass, Notch, dpp, and hh is required; loss-of-function mutations at any of these loci can lead to CC absence or severe functional defects. The CC integrates external inputs that converge from nutrient status, the intestine, and the brain. Under starvation, surface glucose sensors detect hypoglycaemia and increase AKH secretion. Enteroendocrine cells release peptides such as AstA, Bursicon α, and NPF, exerting positive or negative feedback on the CC. Dopaminergic neurons, pigment-dispersing factor (PDF), and DILP1/2 from the brain create a neuro-endocrine antagonistic network that finely tunes AKH release. The CC secretes three principal molecular classes: (1) AKH, which, via the AKHR–cAMP–PKA pathway, mobilises glycogen and triacylglycerol in the fat body; (2) Limostatin (Lst) , which, acting through its receptor, suppresses DILP release from IPCs; and (3) the insulin antagonist protein Imaginal morphogenesis protein-Late 2 (ImpL2) , which antagonises DILPs and inhibits the TOR pathway, thereby coupling nutrient status to developmental progression. The AKH/AKHR axis drives carbohydrate and lipid mobilisation and foraging hyperactivity under starvation, high-fat diet, or thermal stress. Prothoracicotropic hormone (PTTH) and ImpL2 mediate CC–prothoracic-gland signalling to ensure proper ecdysteroid function after attainment of the critical weight. CC axons innervate the crop, modulating its emptying rate, and the AKH-FoxO-s-LNv circuit prevents starvation-induced sleep loss, thereby maintaining circadian homeostasis. By integrating CC developmental mechanisms, hormone secretion pathways, and interactions with other tissues, this review not only advances our understanding of insect energy homeostasis but also provides novel perspectives and molecular targets for studies of metabolic disorders and related diseases in vertebrates.

Key words: Drosophila melanogaster, Metabolism, Corpora Cardiaca, Adipokinetic hormone

中图分类号: