实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (5): 393-400.DOI: 10.12300/j.issn.1674-5817.2022.027
覃辉艳(
)(
), 陈华凤, 杨慧, 罗海兰, 傅伟忠, 李庆波, 张洁宏(
)(
)
收稿日期:2022-03-04
修回日期:2022-07-28
出版日期:2022-10-25
发布日期:2022-10-25
通讯作者:
张洁宏(1969—),男,主任技师,研究方向:食品及保健食品毒理和功能研究。E-mail:zhjh510@126.com。ORCID: 0000-0003-0937-4386作者简介:覃辉艳(1981—),女,副主任技师,研究方向:食品及保健食品毒理和功能研究。E-mail:qinhuiyan123@sina.com。ORCID:0000-0002-4536-7127
基金资助:
Huiyan QIN(
)(
), Huafeng CHEN, Hui YANG, Hailan LUO, Weizhong FU, Qingbo LI, Jiehong ZHANG(
)(
)
Received:2022-03-04
Revised:2022-07-28
Published:2022-10-25
Online:2022-10-25
Contact:
ZHANG Jiehong (ORCID: 0000-0003-0937-4386), E-mail: zhjh510@126.com摘要:
目的 探讨缫丝水对老龄大鼠氧化应激水平的改善作用。 方法 模拟传统缫丝水产生过程进行干蚕茧样品处理,并对缫丝水进行成分检测。采用16月龄老龄大鼠,根据血清丙二醛(malonaldehyde,MDA)含量将大鼠分层随机分为3个受试样品剂量组和1个阴性对照组,每组10只。剂量组分别给予500、250、125 mg/kg剂量的缫丝水,阴性对照组给予纯水,每天灌胃1次,连续灌胃30 d。实验结束后检测各组大鼠脂质氧化产物MDA、蛋白质氧化产物蛋白质羰基、抗氧化物质还原型谷胱甘肽(reduced glutathione,GSH)的含量和3种抗氧化酶即超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)的活性。 结果 缫丝水中粗蛋白含量为1 640 mg/100 g,游离氨基酸含量为18 mg/100 g,水解氨基酸含量为1 700 mg/100 g。丝氨酸(30.59%)、门冬氨酸(18.82%)、甘氨酸(10.00%)和苏氨酸(8.24%)是缫丝水中主要的水解氨基酸。与阴性对照组比较,缫丝水能降低老龄大鼠血清和组织中的MDA和蛋白质羰基含量(P<0.05),提高血清和组织中的GSH含量(P<0.05),提高组织中的SOD活性(P<0.05),提高血清和组织中的CAT和GSH-Px活性(P<0.05)。 结论 缫丝水具有改善老龄大鼠氧化应激的作用。
中图分类号:
覃辉艳,陈华凤,杨慧,等. 缫丝水对老龄大鼠氧化应激水平的改善作用[J]. 实验动物与比较医学, 2022, 42(5): 393-400. DOI: 10.12300/j.issn.1674-5817.2022.027.
Huiyan QIN,Huafeng CHEN,Hui YANG,et al. The Capacity of Silkworm Cocoon Water to Mitigate the Level of Oxidative Stress in Aged Rats[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 393-400. DOI: 10.12300/j.issn.1674-5817.2022.027.
氨基酸种类 Amino acid varieties | 百分含量 Contents /% |
|---|---|
| 门冬氨酸 Asp | 18.82 |
| 苏氨酸 Thr | 8.24 |
| 丝氨酸Ser | 30.59 |
| 谷氨酸Glu | 6.47 |
| 脯氨酸Pro | 0.82 |
| 甘氨酸 Gly | 10.00 |
| 丙氨酸 Ala | 4.18 |
| 缬氨酸Val | 3.47 |
| 异亮氨酸 Ile | 0.71 |
| 亮氨酸Leu | 1.29 |
| 酪氨酸 Tyr | 4.47 |
| 苯丙氨酸 Phe | 0.41 |
| 赖氨酸 Lys | 4.00 |
| 组氨酸 His | 1.88 |
| 精氨酸 Arg | 4.65 |
| 合计Total | 100.00 |
表1 缫丝水氨基酸成分
Table 1 Amino acid compositions of silkworm cocoon water
氨基酸种类 Amino acid varieties | 百分含量 Contents /% |
|---|---|
| 门冬氨酸 Asp | 18.82 |
| 苏氨酸 Thr | 8.24 |
| 丝氨酸Ser | 30.59 |
| 谷氨酸Glu | 6.47 |
| 脯氨酸Pro | 0.82 |
| 甘氨酸 Gly | 10.00 |
| 丙氨酸 Ala | 4.18 |
| 缬氨酸Val | 3.47 |
| 异亮氨酸 Ile | 0.71 |
| 亮氨酸Leu | 1.29 |
| 酪氨酸 Tyr | 4.47 |
| 苯丙氨酸 Phe | 0.41 |
| 赖氨酸 Lys | 4.00 |
| 组氨酸 His | 1.88 |
| 精氨酸 Arg | 4.65 |
| 合计Total | 100.00 |
剂量组 Dose group/ (mg·kg-1) | 动物数 Animal numbers | 大鼠体质量 Body weight m/g | 增质量 Weight gain m/g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 1 | Day 7 | Day 14 | Day 21 | Day 30 | |||||||
| 500 | 10 | 854.3±99.1 | 862.8±100.1 | 871.4±101.1 | 878.7±101.6 | 884.9±102.6 | 30.6±4.0 | ||||
| 250 | 10 | 850.3±66.0 | 859.5±66.7 | 867.9±57.6 | 875.8±58.4 | 883.5±59.0 | 33.2±4.0 | ||||
| 125 | 10 | 857.5±122.5 | 865.9±123.6 | 873.4±124.5 | 880.3±125.8 | 886.3±126.8 | 28.8±5.0 | ||||
| 0 | 10 | 861.8±131.8 | 870.0±132.6 | 878.3±134.1 | 885.0±134.5 | 891.4±135.9 | 29.6±5.1 | ||||
表2 实验期间各组老龄大鼠的体质量
Table 2 Body weight of rats in each group during the experiment (xˉ±s)
剂量组 Dose group/ (mg·kg-1) | 动物数 Animal numbers | 大鼠体质量 Body weight m/g | 增质量 Weight gain m/g | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 1 | Day 7 | Day 14 | Day 21 | Day 30 | |||||||
| 500 | 10 | 854.3±99.1 | 862.8±100.1 | 871.4±101.1 | 878.7±101.6 | 884.9±102.6 | 30.6±4.0 | ||||
| 250 | 10 | 850.3±66.0 | 859.5±66.7 | 867.9±57.6 | 875.8±58.4 | 883.5±59.0 | 33.2±4.0 | ||||
| 125 | 10 | 857.5±122.5 | 865.9±123.6 | 873.4±124.5 | 880.3±125.8 | 886.3±126.8 | 28.8±5.0 | ||||
| 0 | 10 | 861.8±131.8 | 870.0±132.6 | 878.3±134.1 | 885.0±134.5 | 891.4±135.9 | 29.6±5.1 | ||||
图1 缫丝水对老龄大鼠血清和脑、肝组织中MDA和蛋白质羰基含量的影响注:SCW为缫丝水。A为实验前血清丙二醛(MDA)含量;B为实验终血清MDA含量;C为实验终脑组织MDA含量;D为实验终肝组织MDA含量;E为实验终血清蛋白质羰基含量;F为实验终脑组织蛋白质羰基含量;G为实验终肝组织蛋白质羰基含量。每组10只大鼠,数据表示为平均值±标准差。与阴性对照组比较,*P<0.05。
Figure 1 Effects of silkworm cocoon water on MDA levels and carbonyl contents in the serum, brain and liver of ratsNote:SCW, silkworm cocoon water. A, serum malonaldehyde (MDA) levels before the experiment; B, serum MDA levels at the end of the experiment; C, brain tissue MDA levels at the end of the experiment; D, hepatic tissue MDA levels at the end of the experiment; E, serum carbonyl contents at the end of the experiment; F, brain tissue carbonyl contents at the end of the experiment; G, hepatic tissue carbonyl contents at the end of the experiment. Data are expressed as mean ± SD with 10 rats per group. *P<0.05, compared with the negative control group.
图2 缫丝水对老龄大鼠血清和脑、肝组织中GSH含量和GSH-Px活性的影响注:SCW为缫丝水。A为实验终血清还原型谷胱甘肽(GSH)含量;B为实验终脑组织GSH含量;C为实验终肝组织GSH含量;D为实验终血清谷胱甘肽过氧化物酶(GSH-Px)活性;E为实验终脑组织GSH-Px活性;F为实验终肝组织GSH-Px活性。每组10只大鼠,数据表示为平均值±标准差。与阴性对照组比较,*P<0.05。
Figure 2 Effects of silkworm cocoon water on GSH levels and GSH-Px activity in the serum, brain, and liver of ratsNote:SCW, silkworm cocoon water. A, serum reduced glutathione (GSH) levels at the end of the experiment; B, brain tissue GSH levels at the end of the experiment; C, hepatic tissue GSH levels at the end of the experiment; D, serum glutathione peroxidase (GSH-Px) activity at the end of the experiment; E, brain tissue GSH-Px activity at the end of the experiment; F, hepatic tissue GSH-Px activity at the end of the experiment. Data are expressed as mean ± SD with 10 rats per group. *P<0.05, compared with the negative control group.
图3 缫丝水对老龄大鼠血清及肝、脑组织SOD和CAT活性的影响注:SCW为缫丝水。A为实验终血清超氧化物歧化酶(SOD)活性;B为实验终脑组织SOD活性;C为实验终肝组织SOD活性;D为实验终血清过氧化物酶(CAT)活性;E为实验终脑组织CAT活性;F为实验终肝组织CAT活性。每组10只大鼠,数据表示为平均值±标准差。与阴性对照组比较,*P<0.05。
Figure 3 Effects of silkworm cocoon water on SOD activity and CAT activity in the serum, brain, and liver of ratsNote:SCW, silkworm cocoon water. A, serum superoxide dismutase (SOD) activity at the end of the experiment; B, brain tissue SOD activity at the end of the experiment; C, hepatic tissue SOD activity at the end of the experiment; D, serum catalase (CAT) activity at the end of the experiment; E, brain tissue CAT activity at the end of the experiment; F, hepatic tissue CAT activity at the end of the experiment. Data are expressed as mean ± SD with 10 rats per group. *P<0.05, compared with the negative control group.
| 1 | 莫钟川, 唐文浩. 缫丝生产废水的特征及处理方法的研究[J]. 安徽农业科学, 2006, 34(14):3432-3433. |
| MO Z C, TANG W H. Treatment of reeling wastewater with biochemistry technology[J]. J Anhui Agric Sci, 2006, 34(14):3432-3433. | |
| 2 | 谢微. 煮茧和汰头废水丝胶回收及后续废水生化处理研究[D]. 桂林: 广西师范大学, 2011. |
| XIE W. Study on recoverying sericin from cocoon-cooking wastewater and boi-chemical treatment[D]. Guilin: Guangxi Normal University,2011. | |
| 3 | 程红霞, 解庆林, 游少鸿. 缫丝工业废水处理技术研究进展[J]. 广西轻工业, 2009, 25(7):87-88. DOI:10.3969/j.issn.1003-2673.2009.07.044 . |
| CHENG H X, XIE Q L, YOU S H. Research progress of silk reeling industrial wastewater treatment technology[J]. Guangxi J Light Ind, 2009, 25(7):87-88. DOI:10.3969/j.issn.1003-2673.2009.07.044 . | |
| 4 | GOWDA G, SHIVALINGAIAH A H, VIJAYEENDRA A M, et al. Sensitization to silk allergen among workers of silk filatures in India: a comparative study[J]. Asia Pac Allergy, 2016, 6(2):90-93. DOI:10.5415/apallergy.2016.6.2.90 . |
| 5 | QIN H Y, ZHANG J H, YANG H, et al. Safety assessment of water-extract sericin from silkworm (Bombyx mori) cocoons using different model approaches[J]. Biomed Res Int, 2020, 2020:9689386. DOI:10.1155/2020/9689386 . |
| 6 | 傅伟忠, 覃辉艳, 覃光球, 等. 缫丝水浓缩液对小鼠免疫功能影响的实验研究[J]. 实用预防医学, 2019, 26(6):672-674. DOI:10.3969/j.issn.1006-3110.2019.06.009 . |
| FU W Z, QIN H Y, QIN G Q, et al. Experimental study on the effect of silkworm cocoon water extracts on immuno-modulatory activity in mice[J]. Pract Prev Med, 2019, 26(6):672-674. DOI:10.3969/j.issn.1006-3110.2019.06.009 . | |
| 7 | 张陆娟, 覃辉艳, 覃光球, 等. 缫丝水对高脂模型大鼠降脂作用的研究[J]. 广西医科大学学报, 2019, 36(7):1056-1058. DOI:10.16190/j.cnki.45-1211/r.2019.07.004 . |
| ZHANG L J, QIN H Y, QIN G Q, et al. Hypolipidemic effect of concentrated water from silk reeling in hyperlipidemic rats[J]. J Guangxi Med Univ, 2019, 36(7):1056-1058. DOI:10.16190/j.cnki.45-1211/r.2019.07.004 . | |
| 8 | 范金波, 周素珍, 任发政, 等. 丝胶多肽的分离及其抗氧化活性研究[J]. 中国食品学报, 2013, 13(12):46-51. DOI:10.16429/j.1009-7848.2013.12.006 . |
| FAN J B, ZHOU S Z, REN F Z, et al. Preparation, separation and antioxidant activity of peptides derived from silk sericin[J]. J Chin Inst Food Sci Technol, 2013, 13(12):46-51. DOI:10.16429/j.1009-7848.2013.12.006 . | |
| 9 | JENA K, PANDEY J P, KUMARI R, et al. Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds[J]. Int J Biol Macromol, 2018, 114:1102-1108. DOI:10.1016/j.ijbiomac.2018.03.058 . |
| 10 | 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中氨基酸的测定: [S]. 北京: 中国标准出版社, 2017. |
| State Health and Family Planning Commission, State Food and Drug Administration. National Food Safety Standard, Determination of Amino Acids in Food: [S]. Beijing: China Standards Press, 2017. | |
| 11 | 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定: [S]. 北京: 中国标准出版社, 2017. |
| State Health and Family Planning Commission, State Food and Drug Administration. National Food Safety Standard, Determination of Protein in Food: [S]. Beijing: China Standards Press, 2017. | |
| 12 | 国家食品药品监督管理局. 关于印发抗氧化功能评价方法等9个保健功能评价方法的通知[A]. 2012. |
| National Food and Medical Products Administration. Notice on distributing 9 health function evaluation methods including antioxidant function evaluation method[A]. 2012. | |
| 13 | 夏世金, 孙涛, 吴俊珍. 自由基、炎症与衰老[J]. 实用老年医学, 2014, 28(2):100-103. DOI:10.3969/j.issn.1003-9198.2014.02.004 . |
| XIA S J, SUN T, WU J Z. Free radical, inflammation and aging[J]. Pract Geriatr, 2014, 28(2):100-103. DOI:10.3969/j.issn.1003-9198.2014.02.004 . | |
| 14 | IGHODARO O M. Molecular pathways associated with oxidative stress in diabetes mellitus[J]. Biomed Pharma-cother, 2018, 108:656-662. DOI:10.1016/j.biopha. 2018. 09.058 . |
| 15 | 练淑平, 张耀, 王振花. 氧化应激在糖尿病性心血管疾病中的研究进展[J]. 医学综述, 2019, 25(10):2029-2033. DOI:10.3969/j.issn.1006-2084.2019.10.030 . |
| LIAN S P, ZHANG Y, WANG Z H. Research progress of oxidative stress in diabetic cardiovascular disease[J]. Med Recapitul, 2019, 25(10):2029-2033. DOI:10.3969/j.issn.1006-2084.2019.10.030 . | |
| 16 | 张丽翠, 刘新, 梁炜炜, 等. 高脂血症患者体内氧化应激水平的研究[J]. 微量元素与健康研究, 2016, 33(1):9-10. |
| ZHANG L C, LIU X, LIANG W W, et al. Study on the level of oxidative stress in patients with hyperlipidemia[J]. Stud Trace Elem Health, 2016, 33(1):9-10. | |
| 17 | TARAFDAR A, PULA G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders[J]. Int J Mol Sci, 2018, 19(12):3824. DOI:10.3390/ijms19123824 . |
| 18 | JAIRANI P S, ASWATHY P M, KRISHNAN D, et al. Apolipoprotein E polymorphism and oxidative stress in peripheral blood-derived macrophage-mediated amyloid-beta phagocytosis in Alzheimer's disease patients[J]. Cell Mol Neurobiol, 2019, 39(3):355-369. DOI:10.1007/s10571-019-00651-1 . |
| 19 | BHATTACHARYYA S, SAHA J. Tumour, oxidative stress and host T cell response: cementing the dominance[J]. Scand J Immunol, 2015, 82(6):477-488. DOI:10.1111/sji.12350 . |
| 20 | HARRIS E D. Regulation of antioxidant enzymes[J]. J Nutr, 1992, 122(3 ):625-626. DOI:10.1093/jn/122.suppl_3.625 . |
| 21 | PACKER L, WITT E H, TRITSCHLER H J. Alpha-lipoic acid as a biological antioxidant[J]. Free Radic Biol Med, 1995, 19(2):227-250. DOI:10.1016/0891-5849(95)00017-R . |
| 22 | 孙红艳. 丙二醛及晚期糖基化终产物在健康成人血清与唾液中的增龄性变化及相关性研究[D]. 北京: 中国人民解放军军医进修学院, 2010. |
| SUN H Y.Age-related changes and the correlation of MDA and AGEs content of serum and saliva in healthy adults[D].Beijing: Chinese People's Liberation Army Military Medical College, 2010. | |
| 23 | 王志辉, 王燕一. 蛋白质羰基与衰老疾病关系的研究进展[J]. 中华老年口腔医学杂志, 2015, 13(1):47-50. DOI:10.3969/j.issn.1672-2973.2015.01.018 . |
| WANG Z H, WANG Y Y. Research progress on the relationship between carbonyl group in protein and aging diseases[J]. Chin J Geriatr Dent, 2015, 13(1):47-50. DOI:10.3969/j.issn.1672-2973.2015.01.018 . | |
| 24 | JHA R, RIZVI S I. Carbonyl formation in erythrocyte membrane proteins during aging in humans[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2011, 155(1):39-42. DOI:10.5507/bp.2011.013 . |
| 25 | 吕宝经, 赵美华, 黄国芳, 等. 年龄变化与脂质过氧化损伤的分析[J]. 上海第二医科大学学报, 1996, 16(1): 40-42. |
| LU B J, ZHAO M H, HUANG G F, et al. An analysis of the lipid peroxidation damage in the different age[J]. Acta Univ Med Second Shanghai, 1996, 16(1): 40-42. | |
| 26 | 李玉芳,黎国模. 过氧化脂质与年龄关系的探讨[J]. 预防医学情报杂志, 1994, 10(3): 132. |
| LI Y F, LI G M.Discussion on the relationship between lipid peroxide and age[J]. J Prev Med Inf, 1994, 10(3): 132. | |
| 27 | 张瑾莉, 杨希, 徐敏, 等. 蚕丝蛋白的营养价值及其在食品中的应用进展[J]. 饮食科学, 2017(8):49, 51. |
| ZHANG J L, YANG X, XU M, et al. Nutritional value of silk protein and its application progress in food[J]. Diet Sci, 2017(8):49, 51. | |
| 28 | ZHOU X H, HE L Q, ZUO S N, et al. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2018, 1864(2):488-498. DOI:10.1016/j.bbadis. 2017. 11.009 . |
| 29 | 王国华, 姜正林, 张祥根, 等. L-丝氨酸对大鼠脑缺血/再灌注损伤保护作用时间窗的实验研究[J]. 中国应用生理学杂志, 2010, 26(1):72-76, 130. DOI:10.13459/j.cnki.cjap.2010.01.028 . |
| WANG G H, JIANG Z L, ZHANG X G, et al. Experimental study of therapeutic time window of L-serine against focal cerebral ischemia/reperfusion injury in rats[J]. Chin J Appl Physiol, 2010, 26(1):72-76, 130. DOI:10.13459/j.cnki.cjap.2010.01.028 . | |
| 30 | WANG Z W, ZHANG J Q, WANG L M, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes[J]. J Pharmacol Sci, 2018, 137(4):387-394. DOI:10.1016/j.jphs.2018.08.005 . |
| [1] | 李晗, 张笑瑞, 张成芳. 间歇禁食法在改善奥氮平诱导小鼠代谢紊乱中的机制研究[J]. 实验动物与比较医学, 2023, 43(1): 3-10. |
| [2] | 李洪波, 黄锐, 代将, 钟振东. 竹节香附素A对肝缺血再灌注大鼠的保护作用机制[J]. 实验动物与比较医学, 2021, 41(1): 55-60. |
| [3] | 税云华, 张兰, 雷光磊, 诸源江, 李培玉. 臭氧大自血法对睡眠剥夺大鼠褪黑素及氧化应激指标的影响[J]. 实验动物与比较医学, 2020, 40(2): 110-115. |
| [4] | 曾宪成, 马璟, 常艳, 刘全海. 实验动物应激后氧化应激状态监测方法的进展[J]. 实验动物与比较医学, 2012, 32(6): 549-552. |
| [5] | 徐孝平, 潘永明, 陈亮, 徐剑钦, 王德军, 朱科燕, 杨玉伟, 陈民利. 慢性心肌缺血小型猪的氧化应激反应指标观测[J]. 实验动物与比较医学, 2012, 32(5): 401-406. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||