1 |
ALI A, KEMTER E, WOLF E. Advances in organ and tissue xenotransplantation[J]. Annual Review of Animal Biosciences, 2024, 12: 369–390. DOI:10.1146/annurev-animal-021122-102606 .
|
2 |
SINGH A K, GOERLICH C E, ZHANG T, et al. Genetically engineered pig heart transplantation in non-human primates[J]. Communications Medicine, 2025, 5: 6. DOI:10.1038/s43856-025-00731-y .
|
3 |
EISENSON D, HISADOME Y, SANTILLAN M, et al. Consistent survival in consecutive cases of life-supporting porcine kidney xenotransplantation using 10ge source pigs[J]. Nature Communications, 2024, 15: 3361. DOI:10.1038/s41467-024-47679-6 .
|
4 |
ANAND R P, LAYER J V, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982): 393–401. DOI:10.1038/s41586-023-06594-4 .
|
5 |
MOHIUDDIN M M, SINGH A K, SCOBIE L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report[J]. Lancet, 2023, 402(10399): 397–410. DOI:10.1016/S0140-6736(23)00775-4 .
|
6 |
GRIFFITH B P, GOERLICH C E, SINGH A K, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. The New England journal of Medicine, 2022, 387(1): 35–44. DOI:10.1056/NEJMoa2201422 .
|
7 |
PAN W, ZHANG W, ZHENG B, et al. Cellular dynamics in pig-to-human kidney xenotransplantation[J]. Med, 2024, 5(8): 1016-1029.e4. DOI:10.1016/j.medj.2024.05.003 .
|
8 |
KAWAI T, WILLIAMS W W, ELIAS N, et al. Xenotransplantation of a porcine kidney for end-stage kidney disease[J]. The New England Journal of Medicine, 2025. DOI:10.1056/NEJMoa2412747 .
|
9 |
MALLAPATY S. First pig-to-human liver transplant recipient "doing very well"[J]. Nature, 2024, 630(8015): 18. DOI:10.1038/d41586-024-01613-4 .
|
10 |
KUWAKI K, Y-L TSENG, DOR F J M F, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience[J]. Nature Medicine, 2005, 11(1): 29–31. DOI:10.1038/nm1171 .
|
11 |
AZIMZADEH A M, KELISHADI S S, EZZELARAB M B, et al. Early graft failure of galtko pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein[J]. Xenotransplantation, 2015, 22(4): 310–316. DOI:10.1111/xen.12176 .
|
12 |
MOHIUDDIN M M, GOERLICH C E, SINGH A K, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months[J]. Xenotransplantation, 2022, 29(3): e12744. DOI:10.1111/xen.12744 .
|
13 |
CHABAN R, MCGRATH G, HABIBABADY Z, et al. Increased human complement pathway regulatory protein gene dose is associated with increased endothelial expression and prolonged survival during ex-vivo perfusion of gtko pig lungs with human blood[J]. Xenotransplantation, 2023, 30(4): e12812. DOI:10.1111/xen.12812 .
|
14 |
WARD T, PIPKIN P A, CLARKSON N A, et al. Decay-accelerating factor cd55 is identified as the receptor for echovirus 7 using celics, a rapid immuno-focal cloning method[J]. The EMBO Journal, 1994, 13(21): 5070–5074. DOI:10.1002/j.1460-2075.1994.tb06836.x .
|
15 |
LUKACIK P, ROVERSI P, WHITE J, et al. Complement regulation at the molecular level: the structure of decay-accelerating factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(5): 1279–1284. DOI:10.1073/pnas.0307200101 .
|
16 |
MURAKAMI H, NAGASHIMA H, TAKAHAGI Y, et al. Transgenic pigs expressing human decay-accelerating factor regulated by porcine mcp gene promoter[J]. Molecular Reproduction and Development, 2002, 61(3): 302–311. DOI:10.1002/mrd.10043 .
|
17 |
KIM S C, MATHEWS D V, BREEDEN C P, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on cd4 t cell depletion[J]. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2019, 19(8): 2174–2185. DOI:10.1111/ajt.15329 .
|
18 |
李欣, 潘登科, 周佳, 等. 表达人源补体调节蛋白hCD55对异种胰岛移植的保护作用[J]. 器官移植, 2022, 13(4): 475–482. DOI:10.3969/j.issn.1674-7445.2022.04.010 .
|
19 |
夏强兵, 冯豪, 王璐, 等. GTKO/hcd55基因工程猪到人异种移植cdc技术的探讨[J]. 中华器官移植杂志, 2022, 43(06): 364–369. DOI:10.3760/cma.j.cn421203-20220505-00096 .
|
20 |
YUE Y, XU W, KAN Y, et al. Extensive germline genome engineering in pigs[J]. Nature Biomedical Engineering, 2021, 5(2): 134–143. DOI:10.1038/s41551-020-00613-9 .
|
21 |
LETI F, LLACI L, MALENICA I, et al. Chapter 13: methods for cpg methylation array profiling via bisulfite conversion[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1706: 233–254. DOI:10.1007/978-1-4939-7471-9_13 .
|
22 |
MOAZAMI N, STERN J M, KHALIL K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients[J]. Nature Medicine, 2023, 29(8): 1989–1997. DOI:10.1038/s41591-023-02471-9 .
|
23 |
LOCKE J E, KUMAR V, ANDERSON D, et al. Normal graft function after pig-to-human kidney xenotransplant[J]. JAMA Surgery, 2023, 158(10): 1106–1108. DOI:10.1001/jamasurg.2023.2774 .
|
24 |
WANG J, XU K, LIU T, et al. Production and functional verification of 8-gene (ggta1, cmah, β4galnt2, hcd46, hcd55, hcd59, htbm, hcd39)-edited donor pigs for xenotransplantation[J]. Cell Proliferation, 2025: e70028. DOI:10.1111/cpr.70028 .
|
25 |
MANOOK M, OLASO D, ANWAR I, et al. Prolonged xenokidney graft survival in sensitized nhp recipients by expression of multiple human transgenes in a triple knockout pig[J]. Science translational Medicine, 2024, 16(751): eadk6152. DOI:10.1126/scitranslmed.adk6152 .
|
26 |
YANG C, WEI Y, LI X, et al. Production of four-gene (gtko/hcd55/htbm/hcd39)-edited donor pigs and kidney xenotransplantation[J]. Xenotransplantation, 2024, 31(4): e12881. DOI:10.1111/xen.12881 .
|
27 |
ZHAO H, LI Y, WIRIYAHDAMRONG T, et al. Improved production of gtko/hcd55/hcd59 triple-gene-modified diannan miniature pigs for xenotransplantation by recloning[J]. Transgenic Research, 2020, 29(3): 369–379. DOI:10.1007/s11248-020-00201-2 .
|