Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (5): 550-559.DOI: 10.12300/j.issn.1674-5817.2024.028
• Animal Models of Human Diseases • Previous Articles Next Articles
HUANG Dongyan1,2(), WU Jianhui1,2(
)(
)
Received:
2024-02-23
Revised:
2024-07-28
Online:
2024-10-25
Published:
2024-11-06
Contact:
WU Jianhui
CLC Number:
HUANG Dongyan,WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research[J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. DOI: 10.12300/j.issn.1674-5817.2024.028.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.028
模型动物 Modeling animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
大鼠 Rats | 生物学资料全面;妊娠期短,生育力强;自发畸形率低;价格低廉,易获得 | 对性激素敏感,不适用于多巴胺受体激动剂和非固醇类抗炎药物的研究;对外源性蛋白的应用受限;药理活性有限或无活性 |
兔 Rabbits | 同大鼠;且生殖道与人类最相似 | 对某些抗生素和消化道紊乱有易感性,其临床症状难以解释 |
小型猪 Minipigs | 性成熟时间较其他非啮齿类动物短;器官发生期短(妊娠第11~35天);与非人灵长类动物相比,多产,精子学资料与人类相似 | 胎盘缺乏转移大分子能力;妊娠期长(114 d);受试物用量大,成本高;尚无用于研究的商业试剂盒 |
斑马鱼 Zebrafish | 生殖周期短;每次产卵数量多;胚胎透明易观察,胎仔发育迅速;实验成本低 | 生殖系统基础资料相对缺乏;体外受精,与人类繁殖方式差异大 |
Table 1 Comparisons of animal models for reproductive and developmental toxicity tests
模型动物 Modeling animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
大鼠 Rats | 生物学资料全面;妊娠期短,生育力强;自发畸形率低;价格低廉,易获得 | 对性激素敏感,不适用于多巴胺受体激动剂和非固醇类抗炎药物的研究;对外源性蛋白的应用受限;药理活性有限或无活性 |
兔 Rabbits | 同大鼠;且生殖道与人类最相似 | 对某些抗生素和消化道紊乱有易感性,其临床症状难以解释 |
小型猪 Minipigs | 性成熟时间较其他非啮齿类动物短;器官发生期短(妊娠第11~35天);与非人灵长类动物相比,多产,精子学资料与人类相似 | 胎盘缺乏转移大分子能力;妊娠期长(114 d);受试物用量大,成本高;尚无用于研究的商业试剂盒 |
斑马鱼 Zebrafish | 生殖周期短;每次产卵数量多;胚胎透明易观察,胎仔发育迅速;实验成本低 | 生殖系统基础资料相对缺乏;体外受精,与人类繁殖方式差异大 |
诱导药物 Inducing drugs | 所用动物 Animals | 给药方式 Administration | 给药剂量和周期 Dose and time | 评价指标 Evaluation indicators |
---|---|---|---|---|
环磷酰胺 Cyclophosphamide | 家兔 | 腹腔注射 | 50 mg/kg连续2 d | 血清FSH、E2 和AMH水平,卵巢组织病理学表现 |
2~3月龄大鼠 | 腹腔注射 | 20 mg/kg,连续20 d | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 | |
6~8周龄C57BL/6小鼠 | 腹腔注射 | 50 mg/kg,连续14 d;100 mg/kg,连续10 d | ||
顺铂 Cisplatin | Wistar大鼠 | 腹腔注射 | 4 mg/kg, 第一次注射后间隔一周再注射 | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 |
SD 大鼠 | 腹腔注射 | 6 mg/kg,第一次注射后间隔一周再注射 | ||
C57BL/6小鼠 | 腹腔注射 | 50 mg/kg,连续7 d | ||
雷公藤多苷片 Tripterygium glycosides tablet | Wistar大鼠 | 灌胃 | 50 mg/kg,连续14 d | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 |
7~8周龄SD鼠 | 400 μg/kg,连续60 d | |||
8周龄SD大鼠 | 50 mg/kg,连续14 d | |||
12周龄SD大鼠 | 40 mg/kg,连续70 d |
Table 2 Comparisons of modeling methods for drug-induced premature ovarian failure animals
诱导药物 Inducing drugs | 所用动物 Animals | 给药方式 Administration | 给药剂量和周期 Dose and time | 评价指标 Evaluation indicators |
---|---|---|---|---|
环磷酰胺 Cyclophosphamide | 家兔 | 腹腔注射 | 50 mg/kg连续2 d | 血清FSH、E2 和AMH水平,卵巢组织病理学表现 |
2~3月龄大鼠 | 腹腔注射 | 20 mg/kg,连续20 d | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 | |
6~8周龄C57BL/6小鼠 | 腹腔注射 | 50 mg/kg,连续14 d;100 mg/kg,连续10 d | ||
顺铂 Cisplatin | Wistar大鼠 | 腹腔注射 | 4 mg/kg, 第一次注射后间隔一周再注射 | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 |
SD 大鼠 | 腹腔注射 | 6 mg/kg,第一次注射后间隔一周再注射 | ||
C57BL/6小鼠 | 腹腔注射 | 50 mg/kg,连续7 d | ||
雷公藤多苷片 Tripterygium glycosides tablet | Wistar大鼠 | 灌胃 | 50 mg/kg,连续14 d | 动情周期,血清FSH 、E2 和AMH水平,卵巢组织病理学表现 |
7~8周龄SD鼠 | 400 μg/kg,连续60 d | |||
8周龄SD大鼠 | 50 mg/kg,连续14 d | |||
12周龄SD大鼠 | 40 mg/kg,连续70 d |
建模方式 Modeling methods | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
化学药物诱导 Chemical drugs induction | 造模方法简单易行,周期短,成本低,模型稳定,应用最广 | 卵巢功能有自然恢复的可能性,不适合进行长期的探索性研究 |
放射疗法诱导 Radiotherapy induction | 成功率高,可重复性强,周期短,能模拟临床放疗损伤导致的卵巢早衰 | 不易操作,对实验者的健康会产生潜在危害;在干预过程中对其他器官也会产生损伤,影响实验结果 |
自身免疫 Autoimmunity | 模拟程度好,适用于免疫学相关的卵巢早衰生物医学研究 | 造模方法复杂,成功率低,周期长 |
卵巢切除 Ovariectomy | 模拟程度好,对动物其他组织的损伤小 | 永久性的卵巢功能丢失,无法应用于卵巢早衰临床治疗研究 |
基因敲除 Gene knockout | 能明确某一特定基因对卵巢早衰的作用 | 成本高,对实验技术要求高,存在外源性基因表达不稳定可能 |
超促排卵 Superovulation | 有效模拟自然衰老卵巢特征,适合卵巢衰老绝经领域研究 | 应用相对较少,缺少背景资料 |
Table 3 Comparisons of common animal models of premature ovarian failure
建模方式 Modeling methods | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
化学药物诱导 Chemical drugs induction | 造模方法简单易行,周期短,成本低,模型稳定,应用最广 | 卵巢功能有自然恢复的可能性,不适合进行长期的探索性研究 |
放射疗法诱导 Radiotherapy induction | 成功率高,可重复性强,周期短,能模拟临床放疗损伤导致的卵巢早衰 | 不易操作,对实验者的健康会产生潜在危害;在干预过程中对其他器官也会产生损伤,影响实验结果 |
自身免疫 Autoimmunity | 模拟程度好,适用于免疫学相关的卵巢早衰生物医学研究 | 造模方法复杂,成功率低,周期长 |
卵巢切除 Ovariectomy | 模拟程度好,对动物其他组织的损伤小 | 永久性的卵巢功能丢失,无法应用于卵巢早衰临床治疗研究 |
基因敲除 Gene knockout | 能明确某一特定基因对卵巢早衰的作用 | 成本高,对实验技术要求高,存在外源性基因表达不稳定可能 |
超促排卵 Superovulation | 有效模拟自然衰老卵巢特征,适合卵巢衰老绝经领域研究 | 应用相对较少,缺少背景资料 |
1 | 周植星, 陈美灵, 张晓东, 等. 男性生殖系统用药生殖毒性评价的监管要求和关注要点[J]. 中国临床药理学杂志, 2023, 39(21):3183-3192. DOI: 10.13699/j.cnki.1001-6821.2023.21.030 . |
ZHOU Z X, CHEN M L, ZHANG X D, et al. The regulatory requirements and points to consider for the developmental and reproductive toxicity assessment for male reproductive system medicines[J]. Chin J Clin Pharmacol, 2023, 39(21):3183-3192. DOI: 10.13699/j.cnki.1001-6821.2023.21.030 . | |
2 | KIM J H, SCIALLI A R. Thalidomide: the tragedy of birth defects and the effective treatment of disease[J]. Toxicol Sci, 2011, 122(1):1-6. DOI: 10.1093/toxsci/kfr088 . |
3 | 国家药品监督管理局药品审评中心. 药物生殖毒性研究技术指导原则[EB/OL]. (2006-12-19)[2024-02-01]. . |
National Medical Products Administration Drug Evaluation Center. The Technical guidelines for research on reproductive toxicity of drugs[EB/OL]. (2006-12-19)[2024-02 -01 ]. . | |
4 | 周萍, 吴建辉. 常见内分泌干扰物对人类生殖功能损伤及其药物干预的研究进展[J]. 中华生殖与避孕杂志, 2022, 42(9):956-961. DOI: 10.3760/cma.j.cn101441-20210307-00106 . |
ZHOU P, WU J H. Research progress on the damage of human reproductive function caused by common endocrine disruptors and its drug intervention[J]. Chin J Reprod Contracept, 2022, 42(9):956-961. DOI: 10.3760/cma.j.cn101441-20210307-00106 . | |
5 | WANG K Y, HUANG D Y, ZHOU P, et al. Bisphenol A exposure triggers the malignant transformation of prostatic hyperplasia in beagle dogs via cfa-miR-204/KRAS axis[J]. Ecotoxicol Environ Saf, 2022, 235:113430. DOI: 10.1016/j.ecoenv.2022.113430 . |
6 | ZHOU P, WU S S, HUANG D Y, et al. Oral exposure to DEHP may stimulate prostatic hyperplasia associated with upregulation of COX-2 and L-PGDS expressions in male adult rats[J]. Reprod Toxicol, 2022, 112:160-170. DOI: 10.1016/j.reprotox.2022.07.008 . |
7 | Food and Drug Administration. S5(R3): Detection of reproductive and developmental toxicity for human pharmaceuticals[EB/OL]. (2020-02-18)[2024-02-01]. . |
8 | 刘昱甫. 拟胚体和斑马鱼模型评价五种食药两用物质发育毒性[D]. 南昌: 江西中医药大学, 2023. DOI: 10.27180/d.cnki.gjxzc.2023.000568 . |
LIU Y F. Embryoid bodies and zebrafish model to evaluate developmental toxicity of five kinds of drug dual-use materials[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2023. DOI: 10.27180/d.cnki.gjxzc.2023.000568 . | |
9 | 郑成成, 王恩力, 徐百卉, 等. 荆防颗粒浸膏对大鼠生育力与早期胚胎发育毒性研究[J]. 中国药物警戒, 2022, 19(5):505-509. DOI: 10.19803/j.1672-8629.2022.05.07 . |
ZHENG C C, WANG E L, XU B H, et al. Toxicity of the reproductive and early embraonic development of Jingfang granule extract in rats[J]. Chin J Pharmacovigil, 2022, 19(5):505-509. DOI: 10.19803/j.1672-8629.2022.05.07 . | |
10 | WANG Y G, WU H, CHEN P, et al. Fertility and early embryonic development toxicity assessment of naringin in Sprague-Dawley rats[J]. Regul Toxicol Pharmacol, 2021, 123:104938. DOI: 10.1016/j.yrtph.2021.104938 . |
11 | YUE P, ZHAO X X, LU F, et al. Embryo-fetal developmental toxicity and toxicokinetics of loxoprofen tromethamine intravenously administered to pregnant rats[J]. Birth Defects Res, 2023, 115(2):240-250. DOI: 10.1002/bdr2.2116 . |
12 | KUWATA C, MATSUOKA T, OHSHIMA Y, et al. Effects of glucokinase activator, DS-7309, on embryo-fetal developmental toxicity in rats and rabbits[J]. Regul Toxicol Pharmacol, 2022, 129:105119. DOI: 10.1016/j.yrtph.2022.105119 . |
13 | RAO G K, SANTAGOSTINO S F, WONG L, et al. Repeat-dose and embryo-fetal developmental toxicity of zinpentraxin Alfa[J]. Reprod Toxicol, 2024, 123:108526. DOI: 10.1016/j.reprotox.2023.108526 . |
14 | BARROW P. Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2020 and 2021[J]. Reprod Toxicol, 2022, 112:100-108. DOI: 10.1016/j.reprotox.2022.06.012 . |
15 | LUNNEY J K, VAN GOOR A, WALKER K E, et al. Importance of the pig as a human biomedical model[J]. Sci Transl Med, 2021, 13(621): eabd5758. DOI: 10.1126/scitranslmed.abd5758 . |
16 | 廖生钱. 小型猪在生殖毒性实验中的研究进展[J]. 畜牧兽医科技信息, 2020(9):28-29. DOI: 10.3969/J.ISSN.1671-6027.2020.09.015 . |
LIAO S Q. Research progress of miniature pigs in reproductive toxicity experiment[J]. Chin J Anim Husb Vet Med, 2020(9):28-29. DOI: 10.3969/J.ISSN.1671-6027.2020.09.015 . | |
17 | SONG Y S, SHAO J J, SHE G B, et al. Developmental and reproductive toxicity of a recombinant protein subunit COVID-19 vaccine (ZF2001) in rats[J]. NPJ Vaccines, 2023, 8(1):74. DOI: 10.1038/s41541-023-00673-3 . |
18 | HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503. DOI: 10.1038/nature12111 . |
19 | 马雪莹. 基于斑马鱼模型研究吲唑磺菌胺的发育毒性与致毒机制[D]. 厦门: 华侨大学, 2022. DOI:10.27155/d.cnki.ghqiu.2022.000728 . |
MA X Y. Study on developmental toxicity and toxicity mechanism of indazolsulfamide based on zebrafish model[D]. Xiamen: Huaqiao University, 2022. DOI:10.27155/d.cnki.ghqiu. 2022.000728 . | |
20 | YU J, CHENG W Q, JIA M, et al. Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing[J]. J Hazard Mater, 2022, 427:127888. DOI: 10.1016/j.jhazmat.2021.127888 . |
21 | 张元慧, 蒋建东, 孔维佳. 非啮齿类动物在生殖毒性试验中的应用进展[J]. 中国比较医学杂志, 2019, 29(11):111-115. DOI: 10.3969/j.issn.1671-7856.2019.11.017 . |
ZHANG Y H, JIANG J D, KONG W J. Research progress with non-rodent species in reproductive toxicity studies[J]. Chin J Comp Med, 2019, 29(11):111-115. DOI: 10.3969/j.issn.1671-7856.2019.11.017 . | |
22 | 杨威, 杨明俊, 王玉柱, 等. 大气污染细颗粒物对女(雌)性生殖健康影响的研究进展[J]. 中华生殖与避孕杂志, 2019(7):602-607. DOI: 10.3760/cma.j.issn.2096-2916.2019.07.016 . |
YANG W, YANG M J, WANG Y Z, et al. Impact of atmospheric fine particles on female reproductive health[J]. Chin J Reprod Contracept, 2019(7):602-607. DOI: 10.3760/cma.j.issn.2096-2916.2019.07.016 . | |
23 | GHAHREMANI-NASAB M, GHANBARI E, JAHANBANI Y, et al. Premature ovarian failure and tissue engineering[J]. J Cell Physiol, 2020, 235(5):4217-4226. DOI: 10.1002/jcp.29376 . |
24 | 李虹璇, 李思慧, 冯嘉欣, 等. 卵巢早衰动物模型构建方法及比较研究进展[J]. 实验动物与比较医学, 2021, 41(6):505-514. DOI: 10.12300/j.issn.1674-5817.2021.056 . |
LI H X, LI S H, FENG J X, et al. Construction methods and comparative research progress of premature ovarian failure animal models[J]. Lab Anim Comp Med, 2021, 41(6):505-514. DOI: 10.12300/j.issn.1674-5817.2021.056 . | |
25 | SHEN J, CAO D, SUN J L. Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure[J]. World J Stem Cells, 2020, 12(4):277-287. DOI: 10.4252/wjsc.v12.i4.277 . |
26 | 董若曦, 朱小丹, 樊伯珍, 等. 不同剂量顺铂腹腔注射建立大鼠化疗损伤性卵巢早衰模型[J]. 实验动物与比较医学, 2020, 40(2):104-109. DOI: 10.3969/j.issn.1674-5817.2020.02.003 . |
DONG R X, ZHU X D, FAN B Z, et al. Intraperitoneal injection in different dosages of cisplatin to establish a rat model of premature ovarian failure induced by chemotherapy[J]. Lab Anim Comp Med, 2020, 40(2):104-109. DOI: 10.3969/j.issn.1674-5817.2020.02.003 . | |
27 | HUANG Y Q, HU C, YE H F, et al. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency[J]. J Immunol Res, 2019, 2019:8069898. DOI: 10.1155/2019/8069898 . |
28 | TAN R R, HE Y H, ZHANG S Y, et al. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice[J]. J Ovarian Res, 2019, 12(1):65. DOI: 10.1186/s13048-019-0541-1 . |
29 | 孙萍, 包秀芳. 不同剂量钴60γ射线致大鼠卵巢早衰的实验研究[J].世界最新医学信息文摘, 2017, 17(47):1. DOI:CNKI:SUN:WMIA.0.2017-47-038 . |
SUN P, BAO X F. Experimental study on premature ovarian failure induced by different doses of cobalt60 gamma rays in rats [J]. World Latest Medical Information, 2017, 17(47):1. DOI:CNKI:SUN:WMIA.0.2017-47-038 . | |
30 | 涂晓娟. 免疫性卵巢早衰中Treg调控B细胞功能的初步研究[D]. 重庆: 中国人民解放军陆军军医大学, 2020. DOI: 10.27001/d.cnki.gtjyu.2019.000218 . |
TU X J. Autoimmune ovarian premature aging Treg regulation B cell function in the preliminary study[D]. Chongqing: The Chinese people's liberation army (PLA) army medical university, 2020. DOI: 10.27001 / , nkidc. Gtjyu. 2019.000218. | |
31 | LI X R, XIE J X, WANG Q R, et al. MiR-21 and pellino-1 expression profiling in autoimmune premature ovarian insufficiency[J]. J Immunol Res, 2020, 2020:3582648. DOI: 10.1155/2020/3582648 . |
32 | 潘先均, 张琪娟, 孙荣华, 等. 小鼠卵巢切除术中戊巴比妥钠麻醉使用及围手术期改良[J]. 医学信息, 2014, 27(1):45-46. DOI: 10.3969/j.issn.1006-1959.2014.01.058 . |
PAN X J, ZHANG Q J, SUN R H, et al. The use of pentobarbital sodium and improvement of ovariectomy during the perioperative period[J]. J Med Inf, 2014, 27(1):45-46. DOI: 10.3969/j.issn.1006-1959.2014.01.058 . | |
33 | 周宇, 贾玉玲, 严大为, 等. 两种小鼠卵巢早衰模型的比较[J]. 上海医学, 2018, 41(8):489-494. DOI:CNKI:SUN:SHYX.0.2018-08-012 . |
ZHOU Y, JIA Y L, YAN D W, et al. Comparison of two kinds of premature ovarian failure model in mice[J]. Shanghai Med J, 2018, 41(8):489-494. DOI:CNKI:SUN:SHYX.0.2018-08-012 . | |
34 | VENTURELLA R, DE VIVO V, CARLEA A, et al. The genetics of non-syndromic primary ovarian insufficiency: a systematic review[J]. Int J Fertil Steril, 2019, 13(3):161-168. DOI: 10.22074/ijfs.2019.5599 . |
35 | EMORI C, ITO H, FUJII W, et al. Oocytes suppress FOXL2 expression in cumulus cells in mice[J]. Biol Reprod, 2020, 103(1):85-93. DOI: 10.1093/biolre/ioaa054 . |
36 | 靳琦, 尹平, 郑慧敏. 早发性卵巢功能不全动物模型研究概述[J]. 中华中医药杂志, 2022, 37(1):305-308. |
JIN Q, YIN P, ZHENG H M. Summary of animal models of premature ovarian insufficiency[J]. Chin J Trad Chin Med Pharm, 2022, 37(1):305-308. | |
37 | NIE X W, DAI Y J, ZHENG Y, et al. Establishment of a mouse model of premature ovarian failure using consecutive superovulation[J]. Cell Physiol Biochem, 2018, 51(5):2341-2358. DOI: 10.1159/000495895 . |
38 | 张博航, 祁晓萱, 袁艳. 睾丸类器官在体外精子发生中的研究进展[J]. 合成生物学, 2024,5(4):770-781. DOI: 10.12211/2096-8280.2023-095 . |
ZHANG B H, QI X X, YUAN Y. Advancements in testicular organoids for in vitro spermatogenesis[J]. Synthetic Biol J, 2024,5(4):770-781. DOI: 10.12211/2096-8280.2023-095 . | |
39 | 刘丽莉, 刘昌平, 孙桃桃, 等. 锁阳水提液对环磷酰胺所致小鼠睾丸损伤的影响[J]. 淮北师范大学学报(自然科学版), 2024, 45(1):56-61. DOI: 10.3969/j.issn.2096-8248.2024.01.010 . |
LIU L L, LIU C P, SUN T T, et al. Effect of Cynomorium songaricum water extract on testicular injury induced by cyclophosphamide in mice[J]. J Huaibei Norm Univ Nat Sci, 2024, 45(1):56-61. DOI: 10.3969/j.issn.2096-8248.2024.01.010 . | |
40 | LIN X Y, LI Q R, LI H Y, et al. Jujing Zhuyu decoction inhibits apoptosis in rats with asthenozoospermia by regulating the mitochondrial apoptosis pathway[J]. Andrologia, 2022, 54(11): e14632. DOI: 10.1111/and.14632 . |
41 | IRAM F, BATOOL S, SHAMEEM S, et al. Effect of aqueous garlic (Allium sativum) extract against di-(2-ethylhexyl) phthalate induced reproductive toxicity in male mice[J]. Andrologia, 2022, 54(8): e14480. DOI: 10.1111/and.14480 . |
42 | ZHENG X Y, GUO C M, LV Z J, et al. From animal to cell model: pyroptosis targeted-fibrosis is a novel mechanism of lead-induced testicular toxicity[J]. Food Chem Toxicol, 2023, 178:113886. DOI: 10.1016/j.fct.2023.113886 . |
[1] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[2] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
[3] | . Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[6] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[7] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[8] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[9] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[10] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
[11] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[12] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
[13] | LIN Jiang, LUO Fei, LIU Peng, HAN Siyin, CHEN Zhenxing, LIANG Zhongxiu, LAN Taijin. Research Progress Related to Candidate Treatment Methods and Modeling Factors for Diabetic Animal Models with Skin Injury [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 515-520. |
[14] | LI Feng, LI Shun, REN Xiaonan, ZHOU Xiaohui. A Brief Review on Development and Application of Animal Models of Emerging Infectious Diseases Caused by Three Genus Viruses [J]. Laboratory Animal and Comparative Medicine, 2020, 40(3): 173-. |
[15] | GAO Shiping, LI Feng, ZHA Sifan. High-fat Diet Induced Cynomolgus Monkey Model of Non-alcoholic Fatty Liver Disease [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 123-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||