Laboratory Animal and Comparative Medicine ›› 2018, Vol. 38 ›› Issue (6): 428-433.DOI: 10.3969/j.issn.1674-5817.2018.06.005
Previous Articles Next Articles
SONG Deng-peng1, RAO Hong1, HAN An-yan1, WU Fu-yun1, CHEN De-sen
Received:2018-01-22
Online:2018-12-25
Published:2021-03-01
CLC Number:
SONG Deng-peng,RAO Hong,HAN An-yan,et al. Effects of Icariin on Human BALB/c-nu Prostate Cancer Model in Nude Mice[J]. Laboratory Animal and Comparative Medicine, 2018, 38(6): 428-433. DOI: 10.3969/j.issn.1674-5817.2018.06.005.
| [1] 罗敏,朱玲,刘玲,等.影响前列腺癌患者生存质量的危险因素分析[J].西部医学,2018,30(8):1200-1206. [2] Barocas DA,Alvarez J,Resnick MJ,et al.Association between radiation therapy,surgery,or observation for localized prostate cancer and patient-reported outcomes after 3 years[J].JAMA,2017,317(11):1126-1140. [3] 匡小跟,张晖辉,许韩峰,等.钙黏蛋白E、桥粒芯糖蛋白2、磷酸化Akt和转录因子Snail在侵袭性前列腺癌中的作用[J].中国现代医学杂志,2016,26(8):38-42. [4] Romero D,Alshareef Z,Gorro oetxebarria I,et al.Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases[J].Carcinogenesis,2015,37(1):18. [5] Vanacore D,Boccellino M,Rossetti S,et al.Micrornas in prostate cancer:an overview[J].Oncotarget,2017,8(30):50240-50251. [6] Atala A.Re:MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes[J].J Urol,2017,198(3):486. [7] Butler DE,Marlein C,Walker HF,et al.Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer[J].Oncotarget,2017,8(34):56698-56713. [8] Zhang P,Wang D,Zhao Y,et al.Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation[J].Nat Med,2017,23(9):1055-1062. [9] 徐猛,刘佳杰,王海光,等.雄激素受体基因对前列腺癌移植瘤生长及P13K/Akt信号通路的影响[J].中国老年学杂志,2018,4(4):881-884. [10] 张振华,沈增丽,侯传玲,等.人源性前列腺癌动物模型的初步建立[J].实验动物与比较医学,2014,34(2):83-88. [11] 王金秋,李志,何丹,等.SCID 小鼠原位接种LNCaP 前列腺癌模型的建立术[J].北京农业职业学院学报,2012,26(5):19-22. [12] 葛信艳,黄玮,李瑞琴,等.AKt信号转导通路与肿瘤发生相互作用的机制研究[J].中国现代医药杂志,2017,19(7):98-101. [13] 徐猛,刘佳杰,王海光,等.雄激素受体基因对前列腺癌移植瘤生长及P13K/AKT信号通路的影响[J].中国老年学杂志,2018,38(4):881-884. [14] 俞攀,尹彬彬,刘春华,等.雄激素受体负向调节雄激素非依赖性前列腺癌细胞 FNI和ZNF438基因表达的研究[J].中华医学杂志,2015,95(48):3935-3940. [15] Watson PA,Arora VK,Sawyers CL.Emerging mechanism s of resistance to androgen receptor inhibitors in prostate cancer[J].Nat Rev Cancerm,2015,15(12):701-711. [16] 兰凤鸣,岳晓,韩磊,等.P13K/ Akt信号通过介导E-catenin通路的活性影响胶质瘤细胞的生长[J].中华神经外科杂志,2012,28(3):275-278. [17] 张洪英,陈军宝,卢宏柱,等.P13 K/Akt信号通路在肿瘤血管形成中的作用研究进展[J].出东医药,2012,52(47):98-100. [18] 王红丽,刘效栓,沈涛,等.脱水淫羊藿素对老年大鼠的抗氧化作用[J].中成药,2017,39(8):1698-1700. [19] 张黎声,韩小晶,罗志荣,等.淫羊藿苷对大鼠骨髓间充质干细胞迁移作用的影响[J].中国中医药信息杂志,2017,24(2):44-48. [20] 陈少秀,饶红,陈德森,等.淫羊藿苷对BALB/c-nu裸小鼠雄激素依赖性前列腺癌雄激素受体信号转导通路的影响[J].长春中医药大学学报,2018,34(3):436-437. [21] 方芳,赵臣,郝峰,等.CD147对前列腺癌细胞雄激素受体磷酸化的影响及其作用机制[J].山东医药,2017,57(28):9-11. [22] 饶红,武福云,陈德森,等.淫羊藿素对BALB/c-nu裸鼠前列腺癌组织磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)信号通路及E-钙黏蛋白的影响[J].中国中医急症,2018,27(5):789-792,796. [23] 许伟,刘昕,李萍,等.淫羊藿苷联合LY294002对涎腺腺样囊性癌细胞增殖和凋亡的影响[J].广西医学,2018,40(4):430-434. [24] 中国抗癌协会泌尿男生殖系肿瘤专业委员会PCa学组.中国前列腺癌患者基因检测专家共识(2018年版)[J].中国癌症杂志,2018,28(8):627-633. [25] 瞿元元,叶定伟,戴波,等.前列腺癌组织中雄激素受体剪接变异体7的表达对转移性前列腺癌患者总生存的影响[J].中华外科杂志,2014,52(8):622-626. [26] Kobayashi PE,Fonseca-Alves CE,Rivera-Calderón LG,et al.Deregulation of E-cadherin,β-catenin,APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes[J].Res Vet Sci,2018,1(18):254-261. [27] 陶晓峰,刘畅,付明杰,等.HMGA2和E-CADHERIN在前列腺癌组织中的表达及意义[J].实用医学杂志,2018,34(2):191-194. [28] 乔永启,李青,杨永明,等.血清降钙素原与 C-反应蛋白联合检测急诊恶性肿瘤患者早期感染的价值[J].现代肿瘤医学,2018,26(5):759-762. [29] 王霞,章明放,张玉洁,等.钙黏附蛋白及Calctionin在前列腺癌组织中的表达及意义[J].山东医药,2010,50(43):34-36. [30] 杨春华,刘宁,曹航,等.特异性核基质结合区结合蛋白1与E-钙黏蛋白、波形蛋白在前列腺癌组织的表达及相关性[J].中华实验外科杂志,2015,32(12):2950-2952. |
| [1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
| [2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
| [3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
| [5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
| [6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
| [7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
| [9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
| [10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
| [11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
| [13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
| [14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
| [15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||