Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (2): 149-161.DOI: 10.12300/j.issn.1674-5817.2023.127
• Animal Models of Human Diseases • Previous Articles Next Articles
Jinhua HU(), Jingjie HAN, Min JIN, Bin HU, Yuefen LOU()()
Received:
2023-09-14
Revised:
2024-02-07
Online:
2024-04-25
Published:
2024-05-09
Contact:
Yuefen LOU
CLC Number:
Jinhua HU, Jingjie HAN, Min JIN, Bin HU, Yuefen LOU. Effects of Puerarin on Bone Density in Rats and Mice: A Meta-analysis[J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 149-161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.127
纳入研究 Included studies | 动物 Animal | 动物数量/只 Animal quantity n | 周期/周 Period/week | 动物模型 Animal model | 葛根素剂量/ (mg·kg-1) Puerarin dosage | 检测部位 Detection site |
---|---|---|---|---|---|---|
Li B (2020)[ | SD大鼠,雌 | 30 | 14 | 去卵巢骨质疏松模型 | 50~100 (ig qd) | 股骨 |
Li B (2022)[ | SD大鼠,雌 | 20 | 14 | 去卵巢骨质疏松模型 | 100 (ig qd) | 股骨 |
Li BB (2014)[ | SD大鼠,雌 | 6 | 12 | 去卵巢骨质疏松模型 | 50 (ip qod) | 胫骨 |
Guo CJ (2019)[ | SD大鼠,雌 | 12 | 14 | 链脲佐菌素诱导糖尿病模型 | 50 (ig qd) | 股骨 |
QIN CY (2023)[ | SD大鼠,雌 | 6 | 12 | 去卵巢骨质疏松模型 | 8 (ip qd) | 股骨/腰椎 |
Yang D (2023)[ | SD大鼠,雌 | 29 | 6 | 去卵巢骨质疏松模型 | 15~30 (ip qd) | 股骨/腰椎 |
Wang GB (2020)[ | SD大鼠,雌 | 40 | 6 | 去卵巢大鼠骨折模型 | 35 (ih qd) | 股骨 |
Li H (2012)[ | SD大鼠,雌 | 48 | 4~20 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Liang H (2012)[ | SD大鼠,雌 | 18 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨/腰椎 |
Liu H (2012)[ | SD大鼠,雌 | 20 | 12 | 去卵巢骨质疏松模型 | 5 (ip qd) | 股骨 |
Huang HL (2011)[ | SD大鼠,雌 | 20 | 10~20 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Xi HR(1) (2018)[ | Wistar大鼠,雌 | 24 | 8 | / | 15.4 (ig qd) | 股骨/椎骨/全身 |
Xi HR(2) (2018)[ | Wistar大鼠,雌 | 20 | 12 | / | 15.4 (ig qd) | 股骨/椎骨/全身 |
Yue HZ (2021)[ | SD大鼠,雌 | 24 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
Li K (2019)[ | Wistar大鼠,雌 | 20 | 4 | 废用性骨质疏松模型 | 15.4 (ig qd) | 胫骨/腰椎 |
Xiao L (2009)[ | 大鼠,雌 | 24 | 12 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨/胫骨/腰椎 |
Xiao L (2020)[ | C57BL/6J小鼠,雌 | 10 | 6 | 去卵巢骨质疏松模型 | 100 (ip qod) | 股骨 |
Lyu LT (2022)[ | KKAY45+C57BL/6J15小鼠 | 30 | 8 | 链脲佐菌素诱导糖尿病模型 | 1.3 (ig qd) | 全身 |
Lyu LT (2023)[ | Wistar大鼠,雌 | 30 | 4 | 去卵巢骨质疏松模型 | 80 (ih qd) | 股骨 |
Wang PP (2012)[ | SD大鼠,雌 | 8 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨 |
Tian Q (2006)[ | SD大鼠,雌 | 26 | 7 | 去卵巢骨质疏松模型 | 20~100 (ih qd) | 股骨/腰椎 |
Zhou Q (2006)[ | SD大鼠,雌 | 40 | 8 | 去卵巢大鼠闭合性骨折模型 | 5~20 (ig qd) | 股骨 |
Yu S (2019)[ | SD大鼠,雌 | 16 | 8~16 | 去卵巢骨质疏松模型 | 40 (ih qd) | 股骨 |
Zhou SH (2010)[ | SD大鼠,雌 | 20 | 12 | 去卵巢骨质疏松模型 | 500 (ig qd) | 腰椎 |
Zeng SL (2018)[ | SD大鼠,雌 | 30 | 12 | 去卵巢骨质疏松模型 | 50~100 (ig qd) | 股骨 |
Zeng SL (2019)[ | SD大鼠 | 20 | 8 | 激素性股骨头坏死模型 | 200 (ip qd) | 股骨 |
Yuan SY (2016)[ | 昆明小鼠,雌 | 32 | 4 | 去卵巢骨质疏松模型 | 2~8 (qd) | 股骨 |
Niu SZ (2019)[ | SD大鼠,雌 | 28 | 8 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Huang T (2010)[ | SD大鼠,雌 | 40 | 12 | 去卵巢骨质疏松模型 | 5~20 (ig qd) | 股骨 |
Tang WK (2020)[ | SD大鼠,雄 | 15 | 4 | 股骨溶解模型 | 15.4~30. 8 (ip qd) | 股骨 |
Chen WM (2021)[ | Wistar大鼠,雌 | 18 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
Yang X (2017)[ | SD大鼠,雌 | 12 | 12 | 去卵巢骨质疏松模型 | 4 (ig qd) | 股骨 |
Li XJ (2009)[ | Wistar大鼠,雌 | 15 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨 |
Xu XS (2021)[ | C57BL/6小鼠,雌 | 20 | 8 | 去卵巢骨质疏松模型 | 100 (ig qd) | 股骨 |
Fang XY (2021)[ | 大鼠,雌 | 16 | 4~12 | 去卵巢骨质疏松模型 | 50 (ig qd) | 股骨 |
Huang YL (2004)[ | SD大鼠,雌 | 16 | 10 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Gao YM (2019)[ | SD大鼠,雌 | 20 | 8 | / | 30.82 (ig qd) | 股骨/全身 |
Qiu ZC (2022)[ | SD大鼠,雌 | 45 | 5~12 | 去卵巢骨质疏松模型 | 50~150 (ig qd) | 胫骨 |
Fang ZH (2020)[ | SD大鼠,雌 | 15 | 3 | 去卵巢骨质疏松模型 | 50~75 (ih qd) | 股骨 |
Wang ZH (2019)[ | SD大鼠,雌 | 20 | 10 | 去卵巢骨质疏松模型 | 50 (ig qd) | 股骨/腰椎 |
Yang ZH (2021)[ | SD大鼠,雌 | 22 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
Table 1 Basic information of the included studies on the effects of puerarin on bone density in rats and mice
纳入研究 Included studies | 动物 Animal | 动物数量/只 Animal quantity n | 周期/周 Period/week | 动物模型 Animal model | 葛根素剂量/ (mg·kg-1) Puerarin dosage | 检测部位 Detection site |
---|---|---|---|---|---|---|
Li B (2020)[ | SD大鼠,雌 | 30 | 14 | 去卵巢骨质疏松模型 | 50~100 (ig qd) | 股骨 |
Li B (2022)[ | SD大鼠,雌 | 20 | 14 | 去卵巢骨质疏松模型 | 100 (ig qd) | 股骨 |
Li BB (2014)[ | SD大鼠,雌 | 6 | 12 | 去卵巢骨质疏松模型 | 50 (ip qod) | 胫骨 |
Guo CJ (2019)[ | SD大鼠,雌 | 12 | 14 | 链脲佐菌素诱导糖尿病模型 | 50 (ig qd) | 股骨 |
QIN CY (2023)[ | SD大鼠,雌 | 6 | 12 | 去卵巢骨质疏松模型 | 8 (ip qd) | 股骨/腰椎 |
Yang D (2023)[ | SD大鼠,雌 | 29 | 6 | 去卵巢骨质疏松模型 | 15~30 (ip qd) | 股骨/腰椎 |
Wang GB (2020)[ | SD大鼠,雌 | 40 | 6 | 去卵巢大鼠骨折模型 | 35 (ih qd) | 股骨 |
Li H (2012)[ | SD大鼠,雌 | 48 | 4~20 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Liang H (2012)[ | SD大鼠,雌 | 18 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨/腰椎 |
Liu H (2012)[ | SD大鼠,雌 | 20 | 12 | 去卵巢骨质疏松模型 | 5 (ip qd) | 股骨 |
Huang HL (2011)[ | SD大鼠,雌 | 20 | 10~20 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Xi HR(1) (2018)[ | Wistar大鼠,雌 | 24 | 8 | / | 15.4 (ig qd) | 股骨/椎骨/全身 |
Xi HR(2) (2018)[ | Wistar大鼠,雌 | 20 | 12 | / | 15.4 (ig qd) | 股骨/椎骨/全身 |
Yue HZ (2021)[ | SD大鼠,雌 | 24 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
Li K (2019)[ | Wistar大鼠,雌 | 20 | 4 | 废用性骨质疏松模型 | 15.4 (ig qd) | 胫骨/腰椎 |
Xiao L (2009)[ | 大鼠,雌 | 24 | 12 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨/胫骨/腰椎 |
Xiao L (2020)[ | C57BL/6J小鼠,雌 | 10 | 6 | 去卵巢骨质疏松模型 | 100 (ip qod) | 股骨 |
Lyu LT (2022)[ | KKAY45+C57BL/6J15小鼠 | 30 | 8 | 链脲佐菌素诱导糖尿病模型 | 1.3 (ig qd) | 全身 |
Lyu LT (2023)[ | Wistar大鼠,雌 | 30 | 4 | 去卵巢骨质疏松模型 | 80 (ih qd) | 股骨 |
Wang PP (2012)[ | SD大鼠,雌 | 8 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨 |
Tian Q (2006)[ | SD大鼠,雌 | 26 | 7 | 去卵巢骨质疏松模型 | 20~100 (ih qd) | 股骨/腰椎 |
Zhou Q (2006)[ | SD大鼠,雌 | 40 | 8 | 去卵巢大鼠闭合性骨折模型 | 5~20 (ig qd) | 股骨 |
Yu S (2019)[ | SD大鼠,雌 | 16 | 8~16 | 去卵巢骨质疏松模型 | 40 (ih qd) | 股骨 |
Zhou SH (2010)[ | SD大鼠,雌 | 20 | 12 | 去卵巢骨质疏松模型 | 500 (ig qd) | 腰椎 |
Zeng SL (2018)[ | SD大鼠,雌 | 30 | 12 | 去卵巢骨质疏松模型 | 50~100 (ig qd) | 股骨 |
Zeng SL (2019)[ | SD大鼠 | 20 | 8 | 激素性股骨头坏死模型 | 200 (ip qd) | 股骨 |
Yuan SY (2016)[ | 昆明小鼠,雌 | 32 | 4 | 去卵巢骨质疏松模型 | 2~8 (qd) | 股骨 |
Niu SZ (2019)[ | SD大鼠,雌 | 28 | 8 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Huang T (2010)[ | SD大鼠,雌 | 40 | 12 | 去卵巢骨质疏松模型 | 5~20 (ig qd) | 股骨 |
Tang WK (2020)[ | SD大鼠,雄 | 15 | 4 | 股骨溶解模型 | 15.4~30. 8 (ip qd) | 股骨 |
Chen WM (2021)[ | Wistar大鼠,雌 | 18 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
Yang X (2017)[ | SD大鼠,雌 | 12 | 12 | 去卵巢骨质疏松模型 | 4 (ig qd) | 股骨 |
Li XJ (2009)[ | Wistar大鼠,雌 | 15 | 12 | 去卵巢骨质疏松模型 | 20 (ig qd) | 股骨 |
Xu XS (2021)[ | C57BL/6小鼠,雌 | 20 | 8 | 去卵巢骨质疏松模型 | 100 (ig qd) | 股骨 |
Fang XY (2021)[ | 大鼠,雌 | 16 | 4~12 | 去卵巢骨质疏松模型 | 50 (ig qd) | 股骨 |
Huang YL (2004)[ | SD大鼠,雌 | 16 | 10 | 去卵巢骨质疏松模型 | 50 (ih qd) | 股骨 |
Gao YM (2019)[ | SD大鼠,雌 | 20 | 8 | / | 30.82 (ig qd) | 股骨/全身 |
Qiu ZC (2022)[ | SD大鼠,雌 | 45 | 5~12 | 去卵巢骨质疏松模型 | 50~150 (ig qd) | 胫骨 |
Fang ZH (2020)[ | SD大鼠,雌 | 15 | 3 | 去卵巢骨质疏松模型 | 50~75 (ih qd) | 股骨 |
Wang ZH (2019)[ | SD大鼠,雌 | 20 | 10 | 去卵巢骨质疏松模型 | 50 (ig qd) | 股骨/腰椎 |
Yang ZH (2021)[ | SD大鼠,雌 | 22 | 6 | 去卵巢骨质疏松模型 | 35 (ih qd) | 股骨/腰椎 |
纳入研究 Included studies | 评估内容 Evaluation contents | 评分 Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Li B (2020)[ | √ | √ | √ | √ | √ | 5 | |||||
Li B (2022)[ | √ | √ | √ | √ | √ | 5 | |||||
Li BB (2014)[ | √ | √ | √ | √ | 4 | ||||||
Guo CJ (2019)[ | √ | √ | √ | √ | 4 | ||||||
QIN CY (2023)[ | √ | √ | √ | √ | 4 | ||||||
Yang D (2023)[ | √ | √ | √ | √ | 4 | ||||||
Wang GB (2020)[ | √ | √ | √ | √ | 4 | ||||||
Li H (2012)[ | √ | √ | √ | √ | √ | 5 | |||||
Liang H (2012)[ | √ | √ | √ | √ | 4 | ||||||
Liu H (2012)[ | √ | √ | √ | √ | 4 | ||||||
Huang HL (2011)[ | √ | √ | √ | √ | √ | 5 | |||||
Xi HR(1) (2018)[ | √ | √ | √ | √ | √ | √ | 6 | ||||
Xi HR(2) (2018)[ | √ | √ | √ | √ | √ | 5 | |||||
Yue HZ (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Li K (2019)[ | √ | √ | √ | √ | √ | 5 | |||||
Xiao L (2009)[ | √ | √ | √ | √ | √ | 5 | |||||
Xiao L (2020)[ | √ | √ | √ | 3 | |||||||
Lyu LT (2022)[ | √ | √ | √ | √ | √ | 5 | |||||
Lyu LT (2023)[ | √ | √ | √ | √ | √ | 5 | |||||
Wang PP (2012)[ | √ | √ | √ | √ | 4 | ||||||
Tian Q (2006)[ | √ | √ | √ | √ | 4 | ||||||
Zhou Q (2006)[ | √ | √ | √ | √ | √ | 5 | |||||
Yu S (2019)[ | √ | √ | √ | √ | 4 | ||||||
Zhou SH (2010)[ | √ | √ | √ | √ | 4 | ||||||
Zeng SL (2018)[ | √ | √ | √ | √ | 4 | ||||||
Zeng SL (2019)[ | √ | √ | √ | √ | 4 | ||||||
Yuan SY (2016)[ | √ | √ | √ | √ | √ | 5 | |||||
Niu SZ (2019)[ | √ | √ | √ | √ | 4 | ||||||
Huang T (2010)[ | √ | √ | √ | √ | 4 | ||||||
Tang WK (2020)[ | √ | √ | √ | √ | 4 | ||||||
Chen WM (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Yang X (2017)[ | √ | √ | √ | √ | √ | 5 | |||||
Li XJ (2009)[ | √ | √ | √ | √ | 4 | ||||||
Xu XS (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Fang XY (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Huang YL (2004)[ | √ | √ | √ | √ | 4 | ||||||
Gao YM (2019)[ | √ | √ | √ | √ | 4 | ||||||
Qiu ZC (2022)[ | √ | √ | √ | √ | √ | √ | 6 | ||||
Fang ZH (2020)[ | √ | √ | √ | √ | √ | 5 | |||||
Wang ZH (2019)[ | √ | √ | √ | √ | 4 | ||||||
Yang ZH (2021)[ | √ | √ | √ | √ | √ | 5 |
Table 2 SYRCLE's risks of bias assessment for studies on the effects of puerarin on bone density in rats and mice
纳入研究 Included studies | 评估内容 Evaluation contents | 评分 Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Li B (2020)[ | √ | √ | √ | √ | √ | 5 | |||||
Li B (2022)[ | √ | √ | √ | √ | √ | 5 | |||||
Li BB (2014)[ | √ | √ | √ | √ | 4 | ||||||
Guo CJ (2019)[ | √ | √ | √ | √ | 4 | ||||||
QIN CY (2023)[ | √ | √ | √ | √ | 4 | ||||||
Yang D (2023)[ | √ | √ | √ | √ | 4 | ||||||
Wang GB (2020)[ | √ | √ | √ | √ | 4 | ||||||
Li H (2012)[ | √ | √ | √ | √ | √ | 5 | |||||
Liang H (2012)[ | √ | √ | √ | √ | 4 | ||||||
Liu H (2012)[ | √ | √ | √ | √ | 4 | ||||||
Huang HL (2011)[ | √ | √ | √ | √ | √ | 5 | |||||
Xi HR(1) (2018)[ | √ | √ | √ | √ | √ | √ | 6 | ||||
Xi HR(2) (2018)[ | √ | √ | √ | √ | √ | 5 | |||||
Yue HZ (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Li K (2019)[ | √ | √ | √ | √ | √ | 5 | |||||
Xiao L (2009)[ | √ | √ | √ | √ | √ | 5 | |||||
Xiao L (2020)[ | √ | √ | √ | 3 | |||||||
Lyu LT (2022)[ | √ | √ | √ | √ | √ | 5 | |||||
Lyu LT (2023)[ | √ | √ | √ | √ | √ | 5 | |||||
Wang PP (2012)[ | √ | √ | √ | √ | 4 | ||||||
Tian Q (2006)[ | √ | √ | √ | √ | 4 | ||||||
Zhou Q (2006)[ | √ | √ | √ | √ | √ | 5 | |||||
Yu S (2019)[ | √ | √ | √ | √ | 4 | ||||||
Zhou SH (2010)[ | √ | √ | √ | √ | 4 | ||||||
Zeng SL (2018)[ | √ | √ | √ | √ | 4 | ||||||
Zeng SL (2019)[ | √ | √ | √ | √ | 4 | ||||||
Yuan SY (2016)[ | √ | √ | √ | √ | √ | 5 | |||||
Niu SZ (2019)[ | √ | √ | √ | √ | 4 | ||||||
Huang T (2010)[ | √ | √ | √ | √ | 4 | ||||||
Tang WK (2020)[ | √ | √ | √ | √ | 4 | ||||||
Chen WM (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Yang X (2017)[ | √ | √ | √ | √ | √ | 5 | |||||
Li XJ (2009)[ | √ | √ | √ | √ | 4 | ||||||
Xu XS (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Fang XY (2021)[ | √ | √ | √ | √ | √ | 5 | |||||
Huang YL (2004)[ | √ | √ | √ | √ | 4 | ||||||
Gao YM (2019)[ | √ | √ | √ | √ | 4 | ||||||
Qiu ZC (2022)[ | √ | √ | √ | √ | √ | √ | 6 | ||||
Fang ZH (2020)[ | √ | √ | √ | √ | √ | 5 | |||||
Wang ZH (2019)[ | √ | √ | √ | √ | 4 | ||||||
Yang ZH (2021)[ | √ | √ | √ | √ | √ | 5 |
Figure 2 Forest plot of the effects of puerarin on bone mineral density at various parts in rats and miceNote:A, Femur; B, Lumbar spine; C, Tibia; D, Whole body.
Figure 3 Sensitivity analysis of the effects of puerarin on bone mineral density in rats and miceNote: A, Femur; B, Lumbar spine; C, Tibia; D, Whole body. SMD, Standardized mean difference; 95% CI, 95% confidence interval.
Figure 4 Publication bias test of related research studies on the effects of puerarin on bone density in rats and miceNote:A, Funnel plot of bone mineral density at femur; B, Funnel plot of bone mineral density at lumbar spine; C, Filled funnel plot at femur; D, Filled funnel plot at lumbar spine. SMD, Standardized mean difference; se, Standard error.
分组 Group | 纳入研究/篇 Included studies/piece | 动物数量/只 Animal quantity (n) | I2值 I square | 效应模型 Effect model | 效应量 Effect size | 效应量(95%CI) Effect size (95% confidence interval) | P值 P value |
---|---|---|---|---|---|---|---|
给药方式Tyeps of administration | |||||||
口服Oral | 397 | 75 | 随机效应 | SMD | 2.30 (1.73, 2.88) | <0.001 | |
皮下注射Hypodermic injection | 327 | 86 | 随机效应 | SMD | 1.68 (0.90, 2,45) | <0.001 | |
腹腔注射Intraperitoneal injection | 100 | 71 | 随机效应 | SMD | 2.57 (1.43, 3.70) | 0.004 | |
给药剂量Dosage | |||||||
≤20 mg/kg | 296 | 75 | 随机效应 | SMD | 2.00 (1.35, 2.64) | <0.001 | |
20~50 mg/kg | 476 | 80 | 随机效应 | SMD | 2.23 (1.65, 2.80) | <0.001 | |
>50 mg/kg | 104 | 89 | 随机效应 | SMD | 2.29 (0.29, 4.28) | 0.020 | |
治疗周期Therapy period | |||||||
≤8 weeks | 487 | 83 | 随机效应 | SMD | 2.11 (1.50, 2.72) | <0.001 | |
>8 weeks | 353 | 70 | 随机效应 | SMD | 2.06 (1.53, 2.58) | <0.001 | |
动物模型Animal model | |||||||
未造模Blank model | 64 | 88 | 随机效应 | SMD | 3.21 (0.93, 5.49) | 0.006 | |
去卵巢Ovariectomized | 693 | 79 | 随机效应 | SMD | 1.90 (1.45, 2.35) | <0.001 | |
其他模型Other models | 67 | 69 | 随机效应 | SMD | 3.28 (1.79, 4.77) | <0.001 | |
葛根素来源Source of puerarin | |||||||
单体成分Monomer component | 396 | 77 | 随机效应 | SMD | 2.36 (1.76, 2.96) | <0.001 | |
药品注射剂Drug injection | 344 | 85 | 随机效应 | SMD | 1.86 (1.11, 2.61) | <0.001 | |
其他Others | 84 | 64 | 随机效应 | SMD | 1.93 (0.87, 2.99) | <0.001 |
Table 3 Subgroup analysis of the effects of puerarin on bone mineral density at femur
分组 Group | 纳入研究/篇 Included studies/piece | 动物数量/只 Animal quantity (n) | I2值 I square | 效应模型 Effect model | 效应量 Effect size | 效应量(95%CI) Effect size (95% confidence interval) | P值 P value |
---|---|---|---|---|---|---|---|
给药方式Tyeps of administration | |||||||
口服Oral | 397 | 75 | 随机效应 | SMD | 2.30 (1.73, 2.88) | <0.001 | |
皮下注射Hypodermic injection | 327 | 86 | 随机效应 | SMD | 1.68 (0.90, 2,45) | <0.001 | |
腹腔注射Intraperitoneal injection | 100 | 71 | 随机效应 | SMD | 2.57 (1.43, 3.70) | 0.004 | |
给药剂量Dosage | |||||||
≤20 mg/kg | 296 | 75 | 随机效应 | SMD | 2.00 (1.35, 2.64) | <0.001 | |
20~50 mg/kg | 476 | 80 | 随机效应 | SMD | 2.23 (1.65, 2.80) | <0.001 | |
>50 mg/kg | 104 | 89 | 随机效应 | SMD | 2.29 (0.29, 4.28) | 0.020 | |
治疗周期Therapy period | |||||||
≤8 weeks | 487 | 83 | 随机效应 | SMD | 2.11 (1.50, 2.72) | <0.001 | |
>8 weeks | 353 | 70 | 随机效应 | SMD | 2.06 (1.53, 2.58) | <0.001 | |
动物模型Animal model | |||||||
未造模Blank model | 64 | 88 | 随机效应 | SMD | 3.21 (0.93, 5.49) | 0.006 | |
去卵巢Ovariectomized | 693 | 79 | 随机效应 | SMD | 1.90 (1.45, 2.35) | <0.001 | |
其他模型Other models | 67 | 69 | 随机效应 | SMD | 3.28 (1.79, 4.77) | <0.001 | |
葛根素来源Source of puerarin | |||||||
单体成分Monomer component | 396 | 77 | 随机效应 | SMD | 2.36 (1.76, 2.96) | <0.001 | |
药品注射剂Drug injection | 344 | 85 | 随机效应 | SMD | 1.86 (1.11, 2.61) | <0.001 | |
其他Others | 84 | 64 | 随机效应 | SMD | 1.93 (0.87, 2.99) | <0.001 |
分组 Group | 纳入研究/篇 Included studies/piece | 动物数量/只 Animal quantity(n) | I2值 I square | 效应模型 Effect model | 效应量 Effect size | 效应量(95%CI) Effect size (95% confidence interval) | P值 P value |
---|---|---|---|---|---|---|---|
给药方式Tyeps of administration | |||||||
口服Oral | 122 | 80 | 随机效应 | SMD | 2.76 (1.58, 3.93) | <0.001 | |
皮下注射Hypodermic injection | 114 | 86 | 随机效应 | SMD | 1.85 (0.53, 3.17) | 0.006 | |
腹腔注射Intraperitoneal injection | 35 | 6 | 固定效应 | SMD | 2.14 (1.24, 3.04) | <0.001 | |
给药剂量Dosage | |||||||
≤20 mg/kg | 119 | 84 | 随机效应 | SMD | 1.87 (1.37, 2.37) | <0.001 | |
20~50 mg/kg | 140 | 87 | 随机效应 | SMD | 1.85 (1.39, 2.31) | <0.001 | |
>50 mg/kg | 34 | 40 | 固定效应 | SMD | 0.68 (-0.24, 1.60) | 0.150 | |
治疗周期Therapy period | |||||||
≤8 weeks | 169 | 85 | 随机效应 | SMD | 1.91 (1.48, 2.34) | <0.001 | |
>8 weeks | 102 | 71 | 随机效应 | SMD | 1.73 (1.24, 2.22) | <0.001 | |
动物模型Animal model | |||||||
未造模Blank model | 44 | 69 | 随机效应 | SMD | 4.83 (2.54, 7.13) | <0.001 | |
去卵巢Ovariectomized | 207 | 76 | 随机效应 | SMD | 1.85 (1.11, 2.60) | <0.001 | |
其他模型Other models | 20 | / | / | / | 1.90 (0.80, 2.99) | <0.001 | |
葛根素来源Source of puerarin | |||||||
单体成分Monomer component | 128 | 89 | 随机效应 | SMD | 2.60 (1.05, 4.14) | 0.001 | |
药品注射剂Drug injection | 123 | 66 | 随机效应 | SMD | 2.20 (1.34, 3.05) | <0.001 | |
其他Others | 20 | / | / | / | 1.12 (0.16, 2.08) | 0.020 |
Table 4 Subgroup analysis of the effects of puerarin on bone mineral density at lumbar spine
分组 Group | 纳入研究/篇 Included studies/piece | 动物数量/只 Animal quantity(n) | I2值 I square | 效应模型 Effect model | 效应量 Effect size | 效应量(95%CI) Effect size (95% confidence interval) | P值 P value |
---|---|---|---|---|---|---|---|
给药方式Tyeps of administration | |||||||
口服Oral | 122 | 80 | 随机效应 | SMD | 2.76 (1.58, 3.93) | <0.001 | |
皮下注射Hypodermic injection | 114 | 86 | 随机效应 | SMD | 1.85 (0.53, 3.17) | 0.006 | |
腹腔注射Intraperitoneal injection | 35 | 6 | 固定效应 | SMD | 2.14 (1.24, 3.04) | <0.001 | |
给药剂量Dosage | |||||||
≤20 mg/kg | 119 | 84 | 随机效应 | SMD | 1.87 (1.37, 2.37) | <0.001 | |
20~50 mg/kg | 140 | 87 | 随机效应 | SMD | 1.85 (1.39, 2.31) | <0.001 | |
>50 mg/kg | 34 | 40 | 固定效应 | SMD | 0.68 (-0.24, 1.60) | 0.150 | |
治疗周期Therapy period | |||||||
≤8 weeks | 169 | 85 | 随机效应 | SMD | 1.91 (1.48, 2.34) | <0.001 | |
>8 weeks | 102 | 71 | 随机效应 | SMD | 1.73 (1.24, 2.22) | <0.001 | |
动物模型Animal model | |||||||
未造模Blank model | 44 | 69 | 随机效应 | SMD | 4.83 (2.54, 7.13) | <0.001 | |
去卵巢Ovariectomized | 207 | 76 | 随机效应 | SMD | 1.85 (1.11, 2.60) | <0.001 | |
其他模型Other models | 20 | / | / | / | 1.90 (0.80, 2.99) | <0.001 | |
葛根素来源Source of puerarin | |||||||
单体成分Monomer component | 128 | 89 | 随机效应 | SMD | 2.60 (1.05, 4.14) | 0.001 | |
药品注射剂Drug injection | 123 | 66 | 随机效应 | SMD | 2.20 (1.34, 3.05) | <0.001 | |
其他Others | 20 | / | / | / | 1.12 (0.16, 2.08) | 0.020 |
1 | 李斌斌, 于世凤. 葛根素调控骨代谢的体外实验研究[J]. 北京大学学报(医学版), 2003, 35(1):74-77. DOI: 10.19723/j.issn.1671-167x.2003.01.022 . |
LI B B, YU S F. Effect of puerarin on the bone metabolism in vitro [J]. J Beijing Med Univ, 2003, 35(1):74-77. DOI: 10.19723/j.issn.1671-167x.2003.01.022 . | |
2 | TIYASATKULKOVIT W, CHAROENPHANDHU N, WONGDEE K, et al. Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica [J]. Phytomedicine, 2012, 19(13):1147-1155. DOI: 10.1016/j.phymed.2012.07.010 . |
3 | SHAN Z M, CHENG N, HUANG R, et al. Puerarin promotes the proliferation and differentiation of MC3T3-E1 cells via microRNA-106b by targeting receptor activator of nuclear factor-κB ligand[J]. Exp Ther Med, 2018, 15(1):55-60. DOI: 10.3892/etm.2017.5405 . |
4 | TIYASATKULKOVIT W, MALAIVIJITNOND S, CHAROENPHANDHU N, et al. Pueraria mirifica extract and puerarin enhance proliferation and expression of alkaline phosphatase and type I collagen in primary baboon osteoblasts[J]. Phytomedicine, 2014, 21(12):1498-1503. DOI: 10.1016/j.phymed.2014.06.019 . |
5 | WANG N, WANG X L, CHENG W X, et al. Puerarin promotes osteogenesis and inhibits adipogenesis in vitro [J]. Chin Med, 2013, 8(1):17. DOI: 10.1186/1749-8546-8-17 . |
6 | LI H, CHEN B P, PANG G F, et al. Anti-osteoporotic activity of puerarin 6"-O-xyloside on ovariectomized mice and its potential mechanism[J]. Pharm Biol, 2016, 54(1):111-117. DOI: 10.3109/13880209.2015.1017885 . |
7 | LEE M R, KIM B, LEE Y J, et al. Ameliorative effects of Pueraria lobata extract on postmenopausal symptoms through promoting estrogenic activity and bone markers in ovariectomized rats[J]. Evid Based Complement Alternat Med, 2021, 2021:7924400. DOI: 10.1155/2021/7924400 . |
8 | ZHOU G N, AN Z P, ZHAO W J, et al. Sex differences in outcomes after stroke among patients with low total cholesterol levels: a large hospital-based prospective study[J]. Biol Sex Differ, 2016, 7:62. DOI: 10.1186/s13293-016-0109-3 . |
9 | GUO C J, XIE J J, HONG R H, et al. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling[J]. Biomed Pharmacother, 2019, 115:108570. DOI: 10.1016/j.biopha.2019.01.031 . |
10 | KULCZYŃSKI B, GRAMZA-MICHAŁOWSKA A, SULIBURSKA J, et al. Puerarin—an isoflavone with beneficial effects on bone health[J]. Front Biosci (Landmark Ed), 2021, 26(12):1653-1667. DOI: 10.52586/5058 . |
11 | HOOIJMANS C R, ROVERS M M, DE VRIES R B M, et al. SYRCLE's risk of bias tool for animal studies[J]. BMC Med Res Methodol, 2014, 14:43. DOI: 10.1186/1471-2288-14-43 . |
12 | LI B, LIU M Y, WANG Y, et al. Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity[J]. Biomed Pharmacother, 2020, 132:110923. DOI: 10.1016/j.biopha. 2020.110923 . |
13 | LI B, WANG Y, GONG S Q, et al. Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics[J]. Phytomedicine, 2022, 102:154198. DOI: 10.1016/j.phymed.2022.154198 . |
14 | LI B B, LIU H, JIA S N. Puerarin enhances bone mass by promoting osteoblastogenesis and slightly lowering bone marrow adiposity in ovariectomized rats[J]. Biol Pharm Bull, 2014, 37(12):1919-1925. DOI: 10.1248/bpb.b14-00513 . |
15 | 覃成禹, 周昊楠, 陈远明. 葛根素对绝经后骨质疏松大鼠不同部位骨骼的抗骨质疏松作用差异的研究[J]. 中华老年骨科与康复电子杂志, 2023, 9(1):23-27. DOI: 10.3877/cma.j.issn.2096-0263.2023.01.005 . |
QIN C Y, ZHOU H N, CHEN Y M. The difference of anti-osteoporosis effect of Puerarin on different parts of bone in postmenopausal osteoporosis rats[J]. Chin J Geriatr Orthop Rehabil Electron Ed, 2023, 9(1):23-27. DOI: 10.3877/cma.j.issn.2096-0263.2023.01.005 . | |
16 | 杨砥, 关智宇. 葛根素基于PPAR-γ/Axin2/Wnt信号通路对去卵巢骨质疏松大鼠的干预作用[J]. 中国老年学杂志, 2023, 43(13):3228-3232. DOI: 10.3969/j.issn.1005-9202.2023.13.041 . |
YANG D, GUAN Z Y. Intervention of puerarin on ovariectomized osteoporosis rats based on PPAR-γ/Axin2/wnt signal pathway[J]. Chin J Gerontol, 2023, 43(13):3228-3232. DOI: 10.3969/j.issn.1005-9202.2023.13.041 . | |
17 | 王国波, 罗波, 苟印尧, 等. 葛根素联合雌二醇对大鼠骨质疏松性骨折愈合的影响[J]. 中国临床药理学杂志, 2020, 36(14):2052-2055. DOI: 10.13699/j.cnki.1001-6821.2020.14.039 . |
WANG G B, LUO B, GOU Y R, et al. Effect of puerarin combined with estradiol on the healing of osteoporotic fracture in rats[J]. Chin J Clin Pharmacol, 2020, 36(14):2052-2055. DOI: 10.13699/j.cnki.1001-6821.2020.14.039 . | |
18 | 李海, 王金花, 黄海玲, 等. 葛根素联合雌二醇对去卵巢大鼠骨质疏松的治疗作用[J]. 中国老年学杂志, 2012, 32(18):3950-3952. DOI: 10.3969/j.issn.1005-9202.2012.18.039 . |
LI H, WANG J H, HUANG H L, et al. Effect of Puerarin combined estradiol on ovariectomized osteoporosis[J]. Chin J Gerontol, 2012, 32(18):3950-3952. DOI: 10.3969/j.issn.1005-9202.2012.18.039 . | |
19 | 梁恒, 邝志强, 王攀攀, 等. 葛根素通过BMP-2调节去卵巢大鼠骨代谢[J]. 广州医学院学报, 2012, 40(3):1-4. |
LIANG H, KUANG Z Q, WANG P P, et al. Puerarin regulates bone metabolism via bone morphogenic protein-2 in ovariectomized rats[J]. Acad J Guangzhou Med Coll, 2012, 40(3):1-4. | |
20 | 刘浩, 李斌斌. 葛根素预防雌激素缺乏性骨质疏松的机制探讨[J]. 中国比较医学杂志, 2012, 22(6):16-20. DOI: 10.3969/j.issn.1671-7856.2012.06.005 . |
LIU H, LI B B. Effect of puerarin on the osteoporosis resulted from ovariectomy in rats[J]. Chin J Comp Med, 2012, 22(6):16-20. DOI: 10.3969/j.issn.1671-7856.2012.06.005 . | |
21 | 黄海玲, 李海, 王金花, 等. 雌激素与不同剂量的葛根素联合对去卵巢大鼠骨质疏松的影响[J]. 中国妇幼保健, 2011, 26(33):5228-5231. |
HUANG H L, LI H, WANG J H, et al. Effect of estradiol combined with different doses of puerarin on osteoporosis of ovariectomized rats[J]. Matern Child Health Care China, 2011, 26(33):5228-5231. | |
22 | 葸慧荣, 李文苑, 杨芳芳, 等. 中药葛根素对青年大鼠峰值骨量的影响研究[J]. 中国骨质疏松杂志, 2018, 24(4):514-519. DOI: 10.3969/j.issn.1006-7108.2018.04.019 . |
XI H R, LI W Y, YANG F F, et al. Effect of Puerarin on peak bone mass in young rats[J]. Chin J Osteoporos, 2018, 24(4):514-519. DOI: 10.3969/j.issn.1006-7108.2018.04.019 . | |
23 | 葸慧荣, 杨芳芳, 高玉海, 等. 葛根素和白藜芦醇对青年大鼠峰值骨量的影响研究[J]. 中国骨伤, 2018, 31(7):635-641. DOI: 10.3969/j.issn.1003-0034.2018.07.010 . |
XI H R, YANG F F, GAO Y H, et al. Resveratrol and puerarin on peak bone mass in young rats[J]. China J Orthop Traumatol, 2018, 31(7):635-641. DOI: 10.3969/j.issn.1003-0034.2018.07.010 . | |
24 | 岳海振, 蔡军, 马新强, 等. 葛根素对绝经后骨质疏松大鼠骨代谢、骨密度及骨生物力学的影响[J]. 中国骨质疏松杂志, 2021, 27(1):77-81. DOI: 10.3969/j.issn.1006-7108.2021.01.017 . |
YUE H Z, CAI J, MA X Q, et al. Effect of puerarin on bone metabolism, bone mineral density, and bone biomechanics in postmenopausal osteoporosis rats[J]. Chin J Osteoporos, 2021, 27(1):77-81. DOI: 10.3969/j.issn.1006-7108.2021.01.017 . | |
25 | 李凯, 秦荣, 邵佳乐, 等. 葛根素对废用性骨质疏松大鼠模型的防治作用及机制研究[J]. 中国中药杂志, 2019, 44(3):535-540. DOI: 10.19540/j.cnki.cjcmm.20181012.003 . |
LI K, QIN R, SHAO J L, et al. Preventive effect and mechanism of puerarin on rat models of disuse osteoporosis[J]. China J Chin Mater Med, 2019, 44(3):535-540. DOI: 10.19540/j.cnki.cjcmm.20181012.003 . | |
26 | 李凯, 高玉海, 王玺, 等. 葛根素对尾吊大鼠发生废用性骨质疏松的防治作用[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(1):50-57. DOI: 10.3969/j.issn.1674-2591.2019.01.007 . |
LI K, GAO Y H, WANG X, et al. Effects of puerarin on prevention of disuse osteoporosis in hindlimb suspension rats[J]. Chin J Osteoporos Bone Miner Res, 2019, 12(1):50-57. DOI: 10.3969/j.issn.1674-2591.2019.01.007 . | |
27 | 肖兰, 李靖. 有氧运动配合葛根素对去卵巢大鼠骨密度、血清细胞因子和骨代谢相关生化指标的影响[J]. 西安体育学院学报, 2009, 26(5):575-579, 601. DOI: 10.3969/j.issn.1001-747X.2009.05.017 . |
XIAO L, LI J. Effect of exercise training and puerarin on bone mineral density, cytokine, bone metabolism index in ovariectomized rats[J]. J Xi'an Phys Educ Univ, 2009, 26(5):575-579, 601. DOI: 10.3969/j.issn.1001-747X.2009.05.017 . | |
28 | XIAO L, ZHONG M D, HUANG Y, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways[J]. Aging, 2020, 12(21):21706-21729. DOI: 10.18632/aging.103976 . |
29 | 吕立桃, 范卫闯, 白登彦, 等. 葛根素对糖尿病性骨质疏松小鼠骨密度及氧化应激的影响[J]. 新中医, 2022, 54(21):7-12. DOI: 10.13457/j.cnki.jncm.2022.21.002 . |
LYU L T, FAN W C, BAI D Y, et al. Effect of puerarin on bone mineral density and oxidative stress in mice with diabetic osteoporosis[J]. N Chin Med, 2022, 54(21):7-12. DOI: 10.13457/j.cnki.jncm.2022.21.002 . | |
30 | 吕立桃, 范卫闯. 葛根素对去卵巢大鼠骨代谢平衡的影响[J]. 西部中医药, 2023, 36(7):27-30. DOI: 10.12174/j.issn.2096-9600.2023.07.06 . |
LYU L T, FAN W C. Influence of puerarin on bone metabolic equilibrium in ovariectomized rats[J]. West J Tradit Chin Med, 2023, 36(7):27-30. DOI: 10.12174/j.issn.2096-9600.2023.07.06 . | |
31 | WANG P P, ZHU X F, YANG L, et al. Puerarin stimulates osteoblasts differentiation and bone formation through estrogen receptor, p38 MAPK, and Wnt/β-catenin pathways[J]. J Asian Nat Prod Res, 2012, 14(9):897-905. DOI: 10.1080/10286020.2012.702757 . |
32 | 田泉, 汤旭磊, 白孟海, 等. 葛根素对去卵巢大鼠骨质疏松和血脂的作用[J]. 中华老年医学杂志, 2006, 25(7):543-545. DOI: 10.3760/j: issn: 0254-9026.2006.07.023 . |
TIAN Q, TANG X L, BAI M H, et al. Effects of puerarin on osteoporosis and blood lipids in ovariectomized rats[J]. Chin J Geriatr, 2006, 25(7):543-545. DOI: 10.3760/j: issn: 0254-9026.2006.07.023 . | |
33 | 周强, 付庭斌. 葛根素对去卵巢大鼠骨质疏松性骨折愈合的促进作用[J]. 中国临床康复, 2006, 10(27):45-47. |
ZHOU Q, FU T B. Effect of puerarin on the healing of osteoporotic fracture in ovariectomized rats[J]. Chin J Clin Rehabil, 2006, 10(27):45-47. | |
34 | 遇实, 季庆辉, 王婧, 等. 葛根素联合雌激素对PMOP大鼠治疗作用及机制实验研究[J]. 黑龙江医药科学, 2019, 42(4):213-215, 217. |
YU S, JI Q H, WANG J, et al. Experimental study on therapeutic effect and mechanism of puerarin combined with estrogen on PMOP rats[J]. Heilongjiang Med Pharm, 2019, 42(4):213-215, 217. | |
35 | 周胜虎, 刘兴炎, 王湘辉, 等. 葛根素对卵巢切除大鼠血清E2、腰椎BMD及骨髓细胞IL-6 mRNA表达的影响[J]. 中国骨质疏松杂志, 2010, 16(12):946-948. DOI: 10.3969/j.issn.1006-7108.2010.12.011 . |
ZHOU S H, LIU X Y, WANG X H, et al. Effects of puerarin on the level of serum E2, bone mineral density of the lumbar vertebrae, and the mRNA expression of interleukin 6 in ovariectomized rats[J]. Chin J Osteoporos, 2010, 16(12):946-948. DOI: 10.3969/j.issn.1006-7108.2010.12.011 . | |
36 | 曾锁林, 施熊兵. 葛根素对去势雌性大鼠骨质疏松症及PI3 KAKT信号转导通路的影响[J]. 河北医药, 2018, 40(23):3566-3569. DOI: 10.3969/j.issn.1002-7386.2018.23.010 . |
ZENG S L, SHI X B. Effects of puerarin on osteoporosis and PI3K/AKT signaling pathway in ovariectomized female rats[J]. Hebei Med J, 2018, 40(23):3566-3569. DOI: 10.3969/j.issn.1002-7386.2018.23.010 . | |
37 | 曾锁林, 施能兵, 刘异. 葛根素对激素性股骨头坏死大鼠骨组织及PI3K/Akt信号转导通路的影响[J]. 蚌埠医学院学报, 2019, 44(11):1441-1444. DOI: 10.13898/j.cnki.issn.1000-2200.2019.11.002 . |
ZENG S L, SHI N B, LIU Y. Effect of puerarin on the bone tissue and PI3K/Akt signal transduction pathway in rats with femoral head osteonecrosis induced by hormone[J]. J Bengbu Med Coll, 2019, 44(11):1441-1444. DOI: 10.13898/j.cnki.issn.1000-2200.2019.11.002 . | |
38 | YUAN S Y, SHENG T, LIU L Q, et al. Puerarin prevents bone loss in ovariectomized mice and inhibits osteoclast formation in vitro [J]. Chin J Nat Med, 2016, 14(4):265-269. DOI: 10.1016/S1875-5364(16)30026-7 . |
39 | 牛士贞, 牛通, 倪勇, 等. 葛根素注射液联合雌二醇注射液对大鼠骨质疏松性骨折愈合的影响[J]. 中国临床药理学杂志, 2019, 35(23):3077-3080. DOI: 10.13699/j.cnki.1001-6821.2019.23.034 . |
NIU S Z, NIU T, NI Y, et al. Effect of puerarin injection combined with estradiol injection on healing of osteoporotic fracture in rats[J]. Chin J Clin Pharmacol, 2019, 35(23):3077-3080. DOI: 10.13699/j.cnki.1001-6821.2019.23.034 . | |
40 | 黄彤, 金邦荃, 孙桂菊, 等. 葛根素对去卵巢大鼠骨密度和骨强度的改善[J]. 现代预防医学, 2010, 37(20):3894-3896. |
HUANG T, JIN B Q, SUN G J, et al. Effects of puerarin on osteoporosis of ovariectomized rats[J]. Mod Prev Med, 2010, 37(20):3894-3896. | |
41 | TANG W K, XIAO L, GE G R, et al. Puerarin inhibits titanium particle-induced osteolysis and RANKL-induced osteoclastogenesis via suppression of the NF-κB signaling pathway[J]. J Cell Mol Med, 2020, 24(20):11972-11983. DOI: 10.1111/jcmm.15821 . |
42 | 陈文明, 胡芯源. 葛根素联合阿仑膦酸钠对绝经后骨质疏松大鼠氧化应激、炎症反应及骨代谢的影响[J]. 中国骨质疏松杂志, 2021, 27(1):73-76, 100. DOI: 10.3969/j.issn.1006-7108.2021.01.016 . |
CHEN W M, HU X Y. Effect of puerarin combined with alendronate on oxidative stress, inflammation reaction, and bone metabolism in postmenopausal osteoporotic rats[J]. Chin J Osteoporos, 2021, 27(1):73-76, 100. DOI: 10.3969/j.issn.1006-7108.2021.01.016 . | |
43 | YANG X, YANG Y, ZHOU S, et al. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways[J]. Curr Mol Med, 2018, 17(7):488-496. DOI: 10.2174/1566524018666171219101142 . |
44 | 李旭炯, 张翠英. 葛根素对去卵巢大鼠骨密度及血清IL-6的影响[J]. 长治医学院学报, 2009, 23(1):13-15. DOI: 10.3969/j.issn.1006-0588.2009.01.005 . |
LI X J, ZHANG C Y. Effects of puerarin on bone mineral density and IL-6 in ovariectomized rats[J]. J Changzhi Med Coll, 2009, 23(1):13-15. DOI: 10.3969/j.issn.1006-0588.2009.01.005 . | |
45 | 许晓山, 庞正宝, 杨军, 等. 葛根素治疗去卵巢小鼠骨量丢失的疗效及对RANKL/RANK/OPG信号通路的影响[J]. 浙江医学, 2021, 43(5):471-474, 481. DOI: 10.12056/j.issn.1006-2785.2021.43.5.2020-2134 . |
XU X S, PANG Z B, YANG J, et al. Effict of puerarin on bone loss in ovariectomized mice and its effect on RANKL/RANK/OPG signaling pathway[J]. Zhejiang Med J, 2021, 43(5):471-474, 481. DOI: 10.12056/j.issn.1006-2785.2021.43.5.2020-2134 . | |
46 | 方晓燕, 李海, 顾建忠, 等. 山茶籽与葛根素对去卵巢大鼠骨质疏松的防治作用比较[J]. 中国老年学杂志, 2021, 41(2):343-345. DOI: 10.3969/j.issn.1005-9202.2021.02.034 . |
FANG X Y, LI H, GU J Z, et al. Comparison of effects of camellia seed and puerarin on osteoporosis in ovariectomized rats[J]. Chin J Gerontol, 2021, 41(2):343-345. DOI: 10.3969/j.issn.1005-9202.2021.02.034 . | |
47 | 黄延玲, 石凤英. 葛根素对去卵巢大鼠骨密度和骨代谢生化指标的影响[J]. 中国临床康复, 2004, 8(12):2307-2309. |
HUANG Y L, SHI F Y. Effects of puerarin on the bone mineral density and biochemical markers of bone metabolism in ovariectomized rats[J]. Chin J Clin Rehabil, 2004, 8(12):2307-2309. | |
48 | 高玉海, 杨芳芳, 游丽娟, 等. 淫羊藿苷与葛根素的复方药对生长期大鼠峰值骨量的影响[J]. 中华内分泌代谢杂志, 2019, 35(2):148-152. DOI: 10.3760/cma.j.issn.1000-6699.2019.02.011 . |
GAO Y H, YANG F F, YOU L J, et al. Effects of compound medicine of icariin and puerarin on peak bone mass in growing rats[J]. Chin J Endocrinol Metab, 2019, 35(2):148-152. DOI: 10.3760/cma.j.issn.1000-6699.2019.02.011 . | |
49 | QIU Z C, LI L, HUANG Y Y, et al. Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway[J]. J Orthop Translat, 2022, 33:55-69. DOI: 10.1016/j.jot.2022.01.003 . |
50 | 方志辉, 张天锋. 葛根素对骨质疏松大鼠成骨细胞增殖和活性的影响及其作用机制[J]. 广西医学, 2020, 42(20):2680-2684. DOI: 10.11675/j.issn.0253-4304.2020.20.16 . |
FANG Z H, ZHANG T F. Effect of puerarin on osteoblast proliferation and activity and its action mechanism in rats with osteoporosis[J]. Guangxi Med J, 2020, 42(20):2680-2684. DOI: 10.11675/j.issn.0253-4304.2020.20.16 . | |
51 | 王振昊, 林涨源. 葛根素联合锌治疗去势大鼠骨质疏松症的实验研究[J]. 中华全科医学, 2019, 17(9):1450-1453. DOI: 10.16766/j.cnki.issn.1674-4152.000967 . |
WANG Z H, LIN Z Y. Experimental study on treatment of osteoporosis with puerarin and zinc in ovariectomized rats[J]. Chin J Gen Pract, 2019, 17(9):1450-1453. DOI: 10.16766/j.cnki.issn.1674-4152.000967 . | |
52 | 杨占华, 郝连升, 张建新. 葛根素对骨质疏松大鼠氧化应激反应、骨代谢和骨密度的影响[J]. 中国骨质疏松杂志, 2021, 27(3):413-417. DOI: 10.3969/j.issn.1006-7108.2021.03.020 . |
YANG Z H, HAO L S, ZHANG J X. Effects of puerarin on oxidative stress response, bone metabolism, and bone mineral density in osteoporotic rats[J]. Chin J Osteoporos, 2021, 27(3):413-417. DOI: 10.3969/j.issn.1006-7108.2021.03.020 . | |
53 | YANG Y R, CHEN D Y, LI Y L, et al. Effect of Puerarin on Osteogenic Differentiation in vitro and on New Bone Formation in vivo [J]. Drug Des Devel Ther, 2022, 16:2885-2900. DOI: 10.2147/DDDT.S379794 . |
54 | 周昊楠, 陈远明. 葛根素防治绝经后骨质疏松症的研究进展[J]. 广西医学, 2019, 41(7):878-883. DOI: 10.11675/j.issn.0253-4304.2019.07.20 . |
ZHOU H N, CHEN Y M. Research progress of puerarin in prevention and treatment of postmenopausal osteoporosis[J]. Guangxi Med J, 2019, 41(7):878-883. DOI: 10.11675/j.issn.0253-4304.2019.07.20 . | |
55 | LV H H, CHE T J, TANG X L, et al. Puerarin enhances proliferation and osteoblastic differentiation of human bone marrow stromal cells via a nitric oxide/cyclic guanosine monophosphate signaling pathway[J]. Mol Med Rep, 2015, 12(2):2283-2290. DOI: 10.3892/mmr.2015.3647 . |
56 | WANG Y, WANG W L, XIE W L, et al. Puerarin stimulates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation[J]. Phytomedicine, 2013, 20(10):787-796. DOI: 10.1016/j.phymed.2013.03.005 . |
57 | ZHANG Y, YAN M, YU Q F, et al. Puerarin prevents LPS-induced osteoclast formation and bone loss via inhibition of Akt activation[J]. Biol Pharm Bull, 2016, 39(12):2028-2035. DOI: 10.1248/bpb.b16-00522 . |
58 | 罗琳. 葛根素联合阿仑膦酸钠治疗绝经后骨质疏松症的效果观察[J]. 中国骨质疏松杂志, 2018, 24(7):930-933, 943. DOI: 10.3969/j.issn.1006-7108.2018.07.019 . |
LUO L. Observation on the effect of puerarin combined with alendronate in the treatment of postmenopausal osteoporosis[J]. Chin J Osteoporos, 2018, 24(7):930-933, 943. DOI: 10.3969/j.issn.1006-7108.2018.07.019 . | |
59 | 彭诗洁. 葛根素配合阿仑膦酸钠治疗绝经后骨质疏松症的效果观察[J]. 西南国防医药, 2019, 29(5):543-546. DOI: 10.3969/j.issn.1004-0188.2019.05.010 . |
PENG S J. Observation on the effect of Puerarin combined with alendronate sodium in the treatment of post-menopausal osteoporosis[J]. Med J Natl Defending Forces Southwest China, 2019, 29(5):543-546. DOI: 10.3969/j.issn.1004-0188.2019.05.010 . | |
60 | 申彦菊, 沈亚非. 葛根素联合阿仑膦酸钠对绝经后骨质疏松症患者骨密度的影响[J]. 北方药学, 2019, 16(7):93-94. DOI: 10.3969/j.issn.1672-8351.2019.07.065 . |
SHEN Y J, SHEN Y F. Effect of puerarin combined with alendronate on bone mineral density in postmenopausal osteoporosis patients[J]. J N Pharm, 2019, 16(7):93-94. DOI: 10.3969/j.issn.1672-8351.2019.07.065 . |
[1] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
[2] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[3] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[4] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[5] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
[6] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[7] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[8] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[9] | Xiaoqian TAN, Hao YANG, Huiqing TANG, Wei QU, Liang LI, Zhen QIAN, Jianzhong GU, Ping XU, Junhua XIAO. Creation and Analysis of Related Genetic Characteristics of BALB/cA.Cg.SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 363-370. |
[10] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[11] | Shanshan ZHAI, Liang LIANG, Yingying CAO, Zhuxin LI, Qing WANG, Junyu TAO, Chenxia YUN, Jing LENG, Haibo TANG. Diagnosis of Trichoepithelioma in a Tree Shrew and Observation of Cell Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 440-445. |
[12] | Zhiqiang PAN, Zixin NONG, Haina XIE, Peike PENG. Injurious Effect of Cisplatin on the Function of Hypothalamus-pituitary-adrenal/gonadal Axis in Mice and the Intervention Effect of Dehydroepiandrosterone [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 229-242. |
[13] | Wenwen GUO, Ya ZHAO, Yinghua WANG, Ke LIU, Xu GE, Yanying ZHANG, Yongfeng WANG, Changhong SHI. Repairing Effects of Ginsenoside Rg1 on Traumatic Brain Injury in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 243-252. |
[14] | Yuan ZHANG, Han LI, Chengfang ZHANG. Whole-brain Transcriptomic Analysis of Weight Gain Mice induced by Olanzapine [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 262-270. |
[15] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||