Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (3): 243-252.DOI: 10.12300/j.issn.1674-5817.2022.187
• Experimental Animal and Comparative Pharmacology • Previous Articles Next Articles
Wenwen GUO1,2(), Ya ZHAO2, Yinghua WANG2, Ke LIU2, Xu GE2, Yanying ZHANG1,3, Yongfeng WANG1()(), Changhong SHI2()()
Received:
2022-12-06
Revised:
2023-04-13
Online:
2023-06-25
Published:
2023-07-18
Contact:
Yongfeng WANG, Changhong SHI
CLC Number:
Wenwen GUO, Ya ZHAO, Yinghua WANG, Ke LIU, Xu GE, Yanying ZHANG, Yongfeng WANG, Changhong SHI. Repairing Effects of Ginsenoside Rg1 on Traumatic Brain Injury in Mice[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 243-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.187
Figure 1 Establishment and evaluation of traumatic brain injury (TBI) model in miceNote: A, Observation of brain tissue injury (the white arrow refers to damaged brain region by TBI); B, Neurological function score (mNSS is the improved nerve injury severity score); C, Elevated cross maze experiment; D-E, Water maze experiment. Control is the blank group without any treatment; Sham is the sham operation group; TBI is TBI modeling group by controlled cortical impact method, with 9 mice in each group. Compared with the sham group, ?P<0.05, ??P<0.01, ???P<0.001; Compared with control group, #P<0.05, ##P<0.01.
Figure 2 Effect of ginsenoside Rg1 on blood-brain barrier after traumatic brain injury (TBI) in miceNote: MMP-9, matrix metalloprotein-9. Sham is the sham operation group; DMSO is the solvent control group after TBI modeling by controlled cortical impact method; 10 mg/kg, 20 mg/kg, and 40 mg/kg Rg1 are 10, 20, 40 mg/kg of ginsenoside Rg1 treatment groups after TBI modeling by controlled cortical impact method, with 8 mice in each group. Compared with DMSO group, ??P<0.01.
Figure 3 Effect of ginsenoside Rg1 on microglia and astrocytes 28 d after traumatic brain injury (TBI) in miceNote: A-B show ionized calcium binding adapter molecule 1 (Iba-1) protein expression (reflecting microglia activity) and the number of Iba-1 positive cells in brain tissues of mice in each group detected by immunofluorescence staining. C-D show glial fibrillary acidic protein (GFAP) expression (reflecting the activity of astrocytes) and the number of GFAP positive cells in the brain tissue of mice in each group detected by immunofluorescence staining. In Figures A and C, the top, middle, and bottom three photos in each group show three slices of similar layers in the brain tissue of three mice. Sham is the sham operation group; DMSO is the solvent control group after TBI modeling by controlled cortical impact method; 10 mg/kg, 20 mg/kg, 40 mg/kg Rg1 are 10, 20, 40 mg/kg of ginsenoside Rg1 treatment groups after TBI modeling by controlled cortical impact method, with 8 mice in each group. Compared with DMSO group, ?P<0.05, ??P<0.01.
Figure 4 Effect of ginsenoside Rg1 on behavioral performance in mice after traumatic brain injury (TBI)Note: A, mNSS neurological function score; B, Elevated cross maze experiment; C-D, water maze experiment. Sham is the sham operation group; DMSO is the solvent control group after TBI modeling by controlled cortical impact method; 10 mg/kg, 20 mg/kg, 40 mg/kg Rg1 are 10, 20, 40 mg/kg of ginsenoside Rg1 treatment groups after TBI modeling by controlled cortical impact method, with 8 mice in each group. Compared with Sham group, #P<0.05, ##P<0.01; compared with DMSO group, ?P<0.05, ??P<0.01.
1 | LANGLOIS J A, RUTLAND-BROWN W, WALD M M. The epidemiology and impact of traumatic brain injury: a brief overview[J]. J Head Trauma Rehabil, 2006, 21(5):375-378. DOI: 10.1097/00001199-200609000-00001 . |
2 | KATZ D I, BERNICK C, DODICK D W, et al. National institute of neurological disorders and stroke consensus diagnostic criteria for traumatic encephalopathy syndrome[J]. Neurology, 2021, 96(18):848-863. DOI: 10.1212/WNL. 0000000000011850 . |
3 | SILVERBERG N D, IACCARINO M A, PANENKA W J, et al. Management of concussion and mild traumatic brain injury: a synthesis of practice guidelines[J]. Arch Phys Med Rehabil, 2020, 101(2):382-393. DOI: 10.1016/j.apmr.2019.10.179 . |
4 | GALGANO M, TOSHKEZI G, QIU X C, et al. Traumatic brain injury: current treatment strategies and future endeavors[J]. Cell Transplant, 2017, 26(7):1118-1130. DOI: 10.1177/0963689717714102 . |
5 | AHMED T, RAZA S H, MARYAM A, et al. Ginsenoside Rb1 as a neuroprotective agent: a review[J]. Brain Res Bull, 2016, 125:30-43. DOI: 10.1016/j.brainresbull.2016.04.002 . |
6 | GAO J, BAI H J, LI Q, et al. In vitro investigation of the mechanism underlying the effect of ginsenoside on the proliferation and differentiation of neural stem cells subjected to oxygen-glucose deprivation/reperfusion[J]. Int J Mol Med, 2018, 41(1):353-363. DOI: 10.3892/ijmm.2017.3253 . |
7 | WU Y X, WU H J, ZENG J X, et al. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice[J]. Acta Neuropathol Commun, 2021, 9(1):74. DOI: 10.1186/s40478-021-01178-7 . |
8 | CUI W X, WU X, FENG D Y, et al. Acrolein induces systemic coagulopathy via autophagy-dependent secretion of von willebrand factor in mice after traumatic brain injury[J]. Neurosci Bull, 2021, 37(8):1160-1175. DOI: 10.1007/s12264-021-00681-0 . |
9 | CHEN Y F, LI J, MA B T, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat[J]. Aging (Albany NY), 2020, 12(18):18274-18296. DOI: 10.18632/aging.103692 . |
10 | LONG X B, YAO X L, JIANG Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1):89. DOI: 10.1186/s12974-020-01761-0 . |
11 | ZHANG Y L, ZHANG Y, CHOPP M, et al. Mesenchymal stem cell-derived exosomes improve functional recovery in rats after traumatic brain injury: a dose-response and therapeutic window study[J]. Neurorehabil Neural Repair, 2020, 34(7):616-626. DOI: 10.1177/1545968320926164 . |
12 | ARAKI T, YOKOTA H, MORITA A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management[J]. Neurol Med Chir (Tokyo), 2017, 57(2):82-93. DOI: 10.2176/nmc.ra.2016-0191 . |
13 | 雷勋明. 人参皂苷Rg1对新生鼠缺氧缺血性脑损伤海马神经元凋亡及学习记忆能力的影响[J]. 中国中西医结合儿科学, 2018, 10(4): 277-279. DOI: 10.3969/j.issn.1674-3865.2018.04.001 . |
LEI X M. Effects of ginseng Rg1 on hippocampal neuronal apoptosis and learning ability of neonatal rats with hypoxic-ischemic brain damage[J]. Chin Pediatr Integr Tradit West Med, 2018, 10(4): 277-279. DOI: 10.3969/j.issn.1674-3865.2018.04.001 . | |
14 | SONG X Y, HU J F, CHU S F, et al. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J]. Eur J Pharmacol, 2013, 710(1-3):29-38. DOI: 10.1016/j.ejphar.2013.03.051 . |
15 | ZOU S F, CHEN W, DING H, et al. Involvement of autophagy in the protective effects of ginsenoside Rb1 in a rat model of traumatic brain injury[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(6):869-877. DOI: 10.1007/s13318-022-00799-0 . |
16 | ZHANG Z R, SONG Z J, SHEN F M, et al. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the Hippocampus[J]. Mol Neurobiol, 2021, 58(4):1550-1563. DOI: 10.1007/s12035-020-02213-9 . |
17 | HU B Y, LIU X J, QIANG R, et al. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury[J]. J Ethnopharmacol, 2014, 155(2):1243-1255. DOI: 10.1016/j.jep.2014.07.009 . |
18 | ZHAI K F, DUAN H, WANG W, et al. Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release[J]. Acta Pharm Sin B, 2021, 11(11):3493-3507. DOI: 10.1016/j.apsb.2021.03.032 . |
19 | DHANDA S, SANDHIR R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins[J]. Mol Neurobiol, 2018, 55(5):3642-3659. DOI: 10.1007/s12035-017-0521-7 . |
20 | REMPE R G, HARTZ A M S, BAUER B. Matrix metallo-proteinases in the brain and blood-brain barrier: versatile breakers and makers[J]. J Cereb Blood Flow Metab, 2016, 36(9):1481-1507. DOI: 10.1177/0271678X16655551 . |
21 | LI Y H, MENG Q, YANG M B, et al. Current trends in drug metabolism and pharmacokinetics[J]. Acta Pharm Sin B, 2019, 9(6):1113-1144. DOI: 10.1016/j.apsb.2019.10.001 . |
22 | XIONG Y, MAHMOOD A, CHOPP M. Animal models of traumatic brain injury[J]. Nat Rev Neurosci, 2013, 14(2):128-142. DOI: 10.1038/nrn3407 . |
23 | KARVE I P, TAYLOR J M, CRACK P J. The contribution of astrocytes and microglia to traumatic brain injury[J]. Br J Pharmacol, 2016, 173(4):692-702. DOI: 10.1111/bph.13125 . |
24 | SOFRONIEW M V, VINTERS H V. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1):7-35. DOI: 10.1007/s00401-009-0619-8 . |
25 | VILLAPOL S, BYRNES K R, SYMES A J. Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury[J]. Front Neurol, 2014, 5:82. DOI: 10.3389/fneur.2014.00082 . |
26 | KOLIATSOS V E, RAO V. The behavioral neuroscience of traumatic brain injury[J]. Psychiatr Clin North Am, 2020, 43(2):305-330. DOI: 10.1016/j.psc.2020.02.009 . |
[1] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
[2] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[3] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[4] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[5] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
[6] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[7] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[8] | Xiaoqian TAN, Hao YANG, Huiqing TANG, Wei QU, Liang LI, Zhen QIAN, Jianzhong GU, Ping XU, Junhua XIAO. Creation and Analysis of Related Genetic Characteristics of BALB/cA.Cg.SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 363-370. |
[9] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[10] | Shanshan ZHAI, Liang LIANG, Yingying CAO, Zhuxin LI, Qing WANG, Junyu TAO, Chenxia YUN, Jing LENG, Haibo TANG. Diagnosis of Trichoepithelioma in a Tree Shrew and Observation of Cell Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 440-445. |
[11] | Zhiqiang PAN, Zixin NONG, Haina XIE, Peike PENG. Injurious Effect of Cisplatin on the Function of Hypothalamus-pituitary-adrenal/gonadal Axis in Mice and the Intervention Effect of Dehydroepiandrosterone [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 229-242. |
[12] | Yuan ZHANG, Han LI, Chengfang ZHANG. Whole-brain Transcriptomic Analysis of Weight Gain Mice induced by Olanzapine [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 262-270. |
[13] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[14] | Susu LIU, Yong WU, Yuan CAO, Haoyang ZHAO, Shijie ZHAI, Xiaowei SUN, Linli LI, Changfa FAN. Establishment of hKDR+/+ Humanized and Rag1-/- Gene Knockout Double Genetically Modified Mouse Model [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 103-111. |
[15] | Jingwei MA, Gen LI, Yang YANG, Caixia ZANG, Xiuqi BAO, Dan ZHANG. Comparative Study on Different Recovery Periods of the Spermatogenic Dysfunction Mouse Model Induced by Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 112-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||