Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (3): 262-270.DOI: 10.12300/j.issn.1674-5817.2023.006
• Experimental Animal and Comparative Pharmacology • Previous Articles Next Articles
Yuan ZHANG1()(), Han LI2()(), Chengfang ZHANG1()()
Received:
2023-02-01
Revised:
2023-04-11
Online:
2023-06-25
Published:
2023-07-18
Contact:
Chengfang ZHANG
CLC Number:
Yuan ZHANG, Han LI, Chengfang ZHANG. Whole-brain Transcriptomic Analysis of Weight Gain Mice induced by Olanzapine[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 262-270.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.006
基因名称 | 引物序列(5'→3') |
---|---|
β-Actin | F: GTGCTATGTTGCTCTAGACTTCG |
R: ATGCCACAGGATTCCATACC | |
Oxt | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA | |
Trpv1 | F: GGGCGAGACTGTCAACAAGA |
R: CGGCTCTATTGCTCCCTGAG | |
Adipoq | F: TGCCCTGTAACTTCTACCCCA |
R: GGCAAGTGTCCTCAACTGTGTC | |
Phox2b | F: TACGCCGCAGTTCCATACAAACTC |
R: TCTTTGAGCTGCGCGCTTGTGAAG | |
Abcg5 | F: GTTCCAAGACTGCTTCTC |
R: ATGACTGCCTCTACCTTC | |
Mogat2 | F: CCAGGTTGAGAACACCCCTG |
R: CTCGATGGGCTTCCCCACTAT | |
Dbh | F: AATCTGCAGCCTTTGCCTAA |
R: TTCAGCATCTGCCTCTGTTG | |
Plac8 | F: TGGACTACAAAGACGATGACGA |
R: ACAAAAGGTCCCACAGAGGC | |
Neurog1 | F: CGATCCCCTTTTCTCCTTTC |
R: TGCAGCAACCTAACAAGTGG | |
Fos | F: TTTCAACGCGGACTACGAGG |
R: GCGCAAAAGTCCTGTGTGTT | |
Dusp1 | F: TGTGAAGCAGAGGAGGAGC |
R: ACGCACGGCATGTTGGTC | |
Egr2 | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA |
Table 1 Primer sequences of differential genes used in real-time quantitative fluorescence PCR
基因名称 | 引物序列(5'→3') |
---|---|
β-Actin | F: GTGCTATGTTGCTCTAGACTTCG |
R: ATGCCACAGGATTCCATACC | |
Oxt | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA | |
Trpv1 | F: GGGCGAGACTGTCAACAAGA |
R: CGGCTCTATTGCTCCCTGAG | |
Adipoq | F: TGCCCTGTAACTTCTACCCCA |
R: GGCAAGTGTCCTCAACTGTGTC | |
Phox2b | F: TACGCCGCAGTTCCATACAAACTC |
R: TCTTTGAGCTGCGCGCTTGTGAAG | |
Abcg5 | F: GTTCCAAGACTGCTTCTC |
R: ATGACTGCCTCTACCTTC | |
Mogat2 | F: CCAGGTTGAGAACACCCCTG |
R: CTCGATGGGCTTCCCCACTAT | |
Dbh | F: AATCTGCAGCCTTTGCCTAA |
R: TTCAGCATCTGCCTCTGTTG | |
Plac8 | F: TGGACTACAAAGACGATGACGA |
R: ACAAAAGGTCCCACAGAGGC | |
Neurog1 | F: CGATCCCCTTTTCTCCTTTC |
R: TGCAGCAACCTAACAAGTGG | |
Fos | F: TTTCAACGCGGACTACGAGG |
R: GCGCAAAAGTCCTGTGTGTT | |
Dusp1 | F: TGTGAAGCAGAGGAGGAGC |
R: ACGCACGGCATGTTGGTC | |
Egr2 | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA |
Figure 1 Changes of body weight and food intake induced by olanzapine administrationNote:A, Changes in body weight induced by olanzapine administration; B, Changes in food intake induced by olanzapine administration. n=10 in each group. Ctrl, control group (intragastric injection with saline); Olz, olanzapine group (intragastric injection with olanzapine). Compared with control group, *P<0.05,**P<0.01.
Figure 2 Transcriptomic analysis of differentially expressed genes after olanzapine administration (Volcano map and GO analysis)Note:A, Volcano map of differentially-expressed genes (logarithmic form of screening condition values were taken for the X and Y axes. Each point in the figure represents a differentially expressed gene. Orange, blue and gray indicate the up-regulated, down-regulated and unchanged genes, respectively). B, GO analysis of differentially expressed genes (differentially-expressed genes-involved molecular functions, cellular environments and biological processes). C, GO-net analysis of differentially expressed genes.
Figure 3 Transcriptomic analysis of differentially expressed genes after olanzapine administration (KEEG analysis and PPI network analysis)Note:A, KEEG analysis of differentially expressed genes (different colors represent different path groups or network clusters). B, protein-protein interaction (PPI) network analysis (each connection point is labeled with the name of the proteins. Blue indicates the down-regulated genes, and red shows the up-regulated gene. The larger the dot, the more connections there are. The black line represents the regulatory effect between the two genes).
Figure 4 Real-time quantitative fluorescence RCR verification results of differentially expressed genes in the whole brain tissues of mice in the olanzapine infusion group and control groupNote:Ctrl, control group (intragastric injection with saline); Olz, olanzapine group (intragastric injection with olanzapine). n= 10 in each group. Compared with the control group, *P<0.05, **P<0.01.
基因 | 奥氮平给药的影响 | 可能的效应 |
---|---|---|
Oxt | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Trpv1 | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Adipoq | ↓ | 脂类合成增加、降解减少 |
Phox2b | ↓ | 产热减少 |
Abcg5 | ↓ | 脂类吸收增加 |
Mogat2 | ↓ | 脂肪吸收的延迟 |
Dbh | ↓ | 产热减少 |
Plac8 | ↑ | 产热增加 |
Neurog1 | ↑ | 未知 |
Table 2 Differential genes changes inced by olanzapine and possible metabolic effects
基因 | 奥氮平给药的影响 | 可能的效应 |
---|---|---|
Oxt | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Trpv1 | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Adipoq | ↓ | 脂类合成增加、降解减少 |
Phox2b | ↓ | 产热减少 |
Abcg5 | ↓ | 脂类吸收增加 |
Mogat2 | ↓ | 脂肪吸收的延迟 |
Dbh | ↓ | 产热减少 |
Plac8 | ↑ | 产热增加 |
Neurog1 | ↑ | 未知 |
1 | CARLI M, KOLACHALAM S, LONGONI B, et al. Atypical antipsychotics and metabolic syndrome: from molecular mechanisms to clinical differences[J]. Pharmaceuticals, 2021, 14(3):238. DOI: 10.3390/ph14030238 . |
2 | LORD C C, WYLER S C, WAN R, et al. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C[J]. J Clin Invest, 2017, 127(9):3402-3406. DOI: 10.1172/JCI93362 . |
3 | ANDERMANN M L, LOWELL B B. Toward a wiring diagram understanding of appetite control[J]. Neuron, 2017, 95(4):757-778. DOI: 10.1016/j.neuron.2017.06.014 . |
4 | STIP E, LUNGU O V, ANSELMO K, et al. Neural changes associated with appetite information processing in schizophrenic patients after 16 weeks of olanzapine treatment[J]. Transl Psychiatry, 2012, 2(6): e128. DOI: 10.1038/tp.2012.53 . |
5 | KEREM L, LAWSON E A. The effects of oxytocin on appetite regulation, food intake and metabolism in humans[J]. Int J Mol Sci, 2021, 22(14):7737. DOI: 10.3390/ijms22147737 . |
6 | LAWSON E A, OLSZEWSKI P K, WELLER A, et al. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis[J]. J Neuroendocrinol, 2020, 32(4): e12805. DOI: 10.1111/jne.12805 . |
7 | PLATZER M, FELLENDORF F T, BENGESSER S A, et al. The relationship between food craving, appetite-related hormones and clinical parameters in bipolar disorder[J]. Nutrients, 2020, 13(1):76. DOI: 10.3390/nu13010076 . |
8 | MATHEWS J, NEWCOMER J W, MATHEWS J R, et al. Neural correlates of weight gain with olanzapine[J]. Arch Gen Psychiatry, 2012, 69(12):1226. DOI: 10.1001/archgenpsychiatry. 2012.934 . |
9 | BENÍTEZ-ANGELES M, MORALES-LÁZARO S L, JUÁREZ-GONZÁLEZ E, et al. TRPV1: structure, endogenous agonists, and mechanisms[J]. Int J Mol Sci, 2020, 21(10):3421. DOI: 10.3390/ijms21103421 . |
10 | KOMARNYTSKY S, RATHINASABAPATHY T, WAGNER C, et al. Endocannabinoid system and its regulation by polyunsaturated fatty acids and full spectrum hemp oils[J]. Int J Mol Sci, 2021, 22(11):5479. DOI: 10.3390/ijms22115479 . |
11 | POTVIN S, LUNGU O V, STIP E. Anandamide is involved in appetite-related amygdala hyperactivations in schizophrenia patients treated with olanzapine: a functional magnetic resonance imaging study[J]. J Clin Psychopharmacol, 2015, 35(1):82-83. DOI: 10.1097/JCP.0000000000000236 . |
12 | DERBENEV A V, ZSOMBOK A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity[J]. Semin Immunopathol, 2016, 38(3):397-406. DOI: 10.1007/s00281-015-0529-x . |
13 | BENARROCH L, KOWALCHUK C, WILSON V, et al. Atypical antipsychotics and effects on feeding: from mice to men[J]. Psychopharmacology, 2016, 233(14):2629-2653. DOI: 10.1007/s00213-016-4324-8 . |
14 | 刘玉芝, 徐乐平, 袁娇, 等. 奥氮平对精神分裂症患者胃动力学的影响[J]. 中国健康心理学杂志, 2013, 21(8): 1149-1151. DOI: 10.3969/j.issn.1005-4847.2010.05.014 . |
LIU Y Z, XU L P, YUAN J, et al. The influence of olanzapine in the treatment of schizophrenic patients on the gastric motility[J]. China J Health Psychol, 2013, 21(8): 1149-1151. DOI: 10.3969/j.issn.1005-4847.2010.05.014 . | |
15 | FANG H, JUDD R L. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3): 1031-1063. DOI: 10.1002/cphy.c170046 . |
16 | RAMANANTSOA N, MATROT B, VARDON G, et al. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn phox2b heterozygous knock-out mice[J]. Front Physiol, 2011, 2:61. DOI: 10.3389/fphys.2011.00061 . |
17 | THOMAS S A, PALMITER R D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline[J]. Nature, 1997, 387(6628):94-97. DOI: 10.1038/387094a0 . |
18 | JIMENEZ-PREITNER M, BERNEY X, THORENS B. Plac8 is required for white adipocyte differentiation in vitro and cell number control in vivo[J]. PLoS One, 2012, 7(11): e48767. DOI: 10.1371/journal.pone.0048767 . |
19 | VANMIERLO T, RUTTEN K, VAN VARK- VAN DER ZEE L C, et al. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice[J]. Plant Foods Hum Nutr, 2011, 66(2):149-156. DOI: 10.1007/s11130-011-0219-3 . |
20 | NELSON D W, GAO Y, YEN M I, et al. Intestine-specific deletion of acyl-CoA: monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance[J]. J Biol Chem, 2014, 289(25):17338-17349. DOI: 10.1074/jbc.M114.555961 . |
21 | ELLIOTT K L, PAVLÍNKOVÁ G, CHIZHIKOV V V, et al. Development in the mammalian auditory system depends on transcription factors[J]. Int J Mol Sci, 2021, 22(8):4189. DOI: 10.3390/ijms22084189 . |
22 | Aggleton JP, Brown MW, Albasser MM. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging [J]. Neuropsychologia, 2012;50(13):3141-3155. DOI: 10.1016/j.neuropsychologia.2012.05.018 . |
23 | GALLO F T, KATCHE C, MORICI J F, et al. Immediate early genes, memory and psychiatric disorders: focus on c-fos, Egr1 and arc[J]. Front Behav Neurosci, 2018, 12:79. DOI: 10.3389/fnbeh.2018.00079 . |
[1] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
[2] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[3] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[4] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[5] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
[6] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[7] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[8] | Shanshan ZHAI, Liang LIANG, Yingying CAO, Zhuxin LI, Qing WANG, Junyu TAO, Chenxia YUN, Jing LENG, Haibo TANG. Diagnosis of Trichoepithelioma in a Tree Shrew and Observation of Cell Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 440-445. |
[9] | Xiaoqian TAN, Hao YANG, Huiqing TANG, Wei QU, Liang LI, Zhen QIAN, Jianzhong GU, Ping XU, Junhua XIAO. Creation and Analysis of Related Genetic Characteristics of BALB/cA.Cg.SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 363-370. |
[10] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[11] | Zhiqiang PAN, Zixin NONG, Haina XIE, Peike PENG. Injurious Effect of Cisplatin on the Function of Hypothalamus-pituitary-adrenal/gonadal Axis in Mice and the Intervention Effect of Dehydroepiandrosterone [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 229-242. |
[12] | Wenwen GUO, Ya ZHAO, Yinghua WANG, Ke LIU, Xu GE, Yanying ZHANG, Yongfeng WANG, Changhong SHI. Repairing Effects of Ginsenoside Rg1 on Traumatic Brain Injury in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 243-252. |
[13] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[14] | Susu LIU, Yong WU, Yuan CAO, Haoyang ZHAO, Shijie ZHAI, Xiaowei SUN, Linli LI, Changfa FAN. Establishment of hKDR+/+ Humanized and Rag1-/- Gene Knockout Double Genetically Modified Mouse Model [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 103-111. |
[15] | Jingwei MA, Gen LI, Yang YANG, Caixia ZANG, Xiuqi BAO, Dan ZHANG. Comparative Study on Different Recovery Periods of the Spermatogenic Dysfunction Mouse Model Induced by Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 112-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||