Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (1): 62-67.DOI: 10.12300/j.issn.1674-5817.2021.081
• Animal Models of Human Diseases • Previous Articles Next Articles
Xing YANG1(), Xingfang PAN1,2(
), Tianyi ZHAO3, Meidan ZHAO1,2, Zhongzheng LI1,2
Received:
2021-04-12
Revised:
2022-11-30
Online:
2022-02-25
Published:
2022-02-25
Contact:
Xingfang PAN
CLC Number:
Xing YANG, Xingfang PAN, Tianyi ZHAO, Meidan ZHAO, Zhongzheng LI. Progress in Animal Models of Secondary Lymphedema[J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 62-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.081
Table 1 Common secondary lymphedema model established by surgical intervention
大鼠 | 后肢 | 未报告 | ||||
大鼠 | 后肢 | 至少8周 | ||||
大鼠 | 后肢 | 未报告 | ||||
小鼠 | 后肢 | 24周 | ||||
猕猴 | 上肢 | 12个月 | ||||
兔 | 前肢 | 18周 |
Table 2 Common secondary lymphedema model established by surgery combined with radiation
大鼠 | 后肢 | 未报告 | ||||
大鼠 | 后肢 | 至少8周 | ||||
大鼠 | 后肢 | 未报告 | ||||
小鼠 | 后肢 | 24周 | ||||
猕猴 | 上肢 | 12个月 | ||||
兔 | 前肢 | 18周 |
1 | SZOLNOKY G, DOBOZY A, KEMÉNY L. Towards an effective management of chronic lymphedema[J]. Clin Dermatol, 2014, 32(5):685-691. DOI:10.1016/j.clindermatol.2014.04.017 . |
2 | PASKETT E D, DEAN J A, OLIVERI J M, et al. Cancer-related lymphedema risk factors, diagnosis, treatment, and impact: a review[J]. J Clin Oncol, 2012, 30(30):3726-3733. DOI:10.1200/JCO.2012.41.8574 . |
3 | SUNG C, WANG S, HSU J, et al. Current understanding of pathological mechanisms of lymphedema[J]. Adv Wound Care (New Rochelle), 2021:2021 Nov 25. DOI:10.1089/wound.2021.0041 . |
4 | 朱雅群. 乳腺癌患者治疗后上肢淋巴水肿发病情况及危险因素的临床研究[D]. 苏州: 苏州大学, 2015. |
5 | KATARU R P, WISER I, BAIK J E, et al. Fibrosis and secondary lymphedema: chicken or egg? [J]. Transl Res, 2019, 209:68-76. DOI:10.1016/j.trsl.2019.04.001 . |
6 | KANTER M A, SLAVIN S A, KAPLAN W. An experimental model for chronic lymphedema[J]. Plast Reconstr Surg, 1990, 85(4):573-580. DOI:10.1097/00006534-199004000-00012 . |
7 | REFINETTI R, KENAGY G J. Diurnally active rodents for laboratory research[J]. Lab Anim, 2018, 52(6):577-587. DOI:10.1177/0023677218771720 . |
8 | HARB A A, LEVI M A, CORVI J J, et al. Creation of a rat lower limb lymphedema model[J]. Ann Plast Surg, 2020, 85(S1 ): S129-S134. DOI:10.1097/SAP.0000000000002323 . |
9 | AKSOYLER D, BITIK O, MENKU OZDEMIR F D, et al. A new experimental lymphedema model: reevaluating the efficacy of rat models and their clinical translation for chronic lymphedema studies[J]. Ann Plast Surg, 2021, 86(6):707-713. DOI:10.1097/SAP.0000000000002479 . |
10 | TRIACCA V, PISANO M, LESSERT C, et al. Experimental drainage device to reduce lymphoedema in a rat model[J]. Eur J Vasc Endovasc Surg, 2019, 57(6):859-867. DOI:10.1016/j.ejvs.2018.04.014 . |
11 | HASSANEIN A H, SINHA M, NEUMANN C R, et al. A murine tail lymphedema model[J]. Vis Exp, 2021:168. DOI:10.3791/61848 . |
12 | WEILER M J, CRIBB M T, NEPIYUSHCHIKH Z, et al. A novel mouse tail lymphedema model for observing lymphatic pump failure during lymphedema development[J]. Sci Rep, 2019, 9(1):10405. DOI:10.1038/s41598-019-46797-2 . |
13 | SUAMI H, SCAGLIONI M F. Lymphatic territories (lymphosomes) in the rat: an anatomical study for future lymphatic research[J]. Plast Reconstr Surg, 2017, 140(5):945-951. DOI:10.1097/PRS.0000000000003776 . |
14 | SUAMI H, SHIN D, CHANG D W. Mapping of lymphosomes in the canine forelimb: comparative anatomy between canines and humans[J]. Plast Reconstr Surg, 2012, 129(3):612-620. DOI:10.1097/PRS.0b013e3182402c6d . |
15 | CHEN H C, PRIBAZ J J, O'BRIEN B M, et al. Creation of distal canine limb lymphedema[J]. Plast Reconstr Surg, 1989, 83(6):1022-1026. DOI:10.1097/00006534-198906000-00016 . |
16 | SOTO-MIRANDA M A, SUAMI H, CHANG D W. Mapping superficial lymphatic territories in the rabbit[J]. Anat Rec (Hoboken), 2013, 296(6):965-970. DOI:10.1002/ar.22699 . |
17 | FERNÁNDEZ PEÑUELA R, CASANÍ ARAZO L, MASIÁ AYALA J. Outcomes in vascularized lymph node transplantation in rabbits: a reliable model for improving the surgical approach to lymphedema[J]. Lymphat Res Biol, 2019, 17(4):413-417. DOI:10.1089/lrb.2018.0038 . |
18 | ITO R, SUAMI H. Lymphatic territories (lymphosomes) in swine: an animal model for future lymphatic research[J]. Plast Reconstr Surg, 2015, 136(2):297-304. DOI:10.1097/PRS. 0000000000001460 . |
19 | TERVALA T V, HARTIALA P, TAMMELA T, et al. Growth factor therapy and lymph node graft for lymphedema[J]. J Surg Res, 2015, 196(1):200-207. DOI:10.1016/j.jss.2015.02.031 . |
20 | JIN D P, AN A, LIU J, et al. Therapeutic responses to exogenous VEGF-C administration in experimental lymphedema: immunohistochemical and molecular characterization[J]. Lymphat Res Biol, 2009, 7(1):47-57. DOI:10.1089/lrb.2009.0002 . |
21 | SOMMER T, MEIER M, BRUNS F, et al. Quantification of lymphedema in a rat model by 3D-active contour segmentation by magnetic resonance imaging[J]. Lymphat Res Biol, 2012, 10(1):25-29. DOI:10.1089/lrb.2011.0010 . |
22 | STASZYK C, BOHNET W, GASSE H, et al. Blood vessels of the rat tail: a histological re-examination with respect to blood vessel puncture methods[J]. Lab Anim, 2003, 37(2):121-125. DOI:10.1258/00236770360563750 . |
23 | FERNÁNDEZ PEÑUELA R, PONS PLAYA G, CASANÍ ARAZO L, et al. An experimental lymphedema animal model for assessing the results of lymphovenous anastomosis[J]. Lymphat Res Biol, 2018, 16(3):234-239. DOI:10.1089/lrb. 2016.0068 . |
24 | TOBBIA D, SEMPLE J, BAKER A, et al. Lymphedema development and lymphatic function following lymph node excision in sheep[J]. J Vasc Res, 2009, 46(5):426-434. DOI:10.1159/000194273 . |
25 | OLSZEWSKI W. Induction of experimental lymphatic edema[J]. Pol Przegl Chir, 1967, 39(9):926-929. |
26 | JOSEPH W J, ASCHEN S, GHANTA S, et al. Sterile inflammation after lymph node transfer improves lymphatic function and regeneration[J]. Plast Reconstr Surg, 2014, 134(1):60-68. DOI:10.1097/PRS.0000000000000286 . |
27 | FRUEH F S, GOUSOPOULOS E, REZAEIAN F, et al. Animal models in surgical lymphedema research: a systematic review[J]. J Surg Res, 2016, 200(1):208-220. DOI:10.1016/j.jss.2015.07.005 . |
28 | DAS S K, FRANKLIN J D, O'BRIEN B M, et al. A practical model of secondary lymphedema in dogs[J]. Plast Reconstr Surg, 1981, 68(3):422-428. |
29 | 孙一宇, 崔春晓, 戴婷婷, 等. 改良小鼠后肢淋巴水肿模型的构建[J]. 组织工程与重建外科杂志, 2016, 12(6):349-352. DOI:10.3969/j.issn.1673-0364.2016.06.005 . |
30 | YANG C, NGUYEN D H, WU C W, et al. Developing a lower limb lymphedema animal model with combined lymphadenectomy and low-dose radiation[J]. Plast Reconstr Surg Glob Open, 2014, 2(3): e121. DOI:10.1097/GOX. 0000000000000064 . |
31 | JØRGENSEN M G, TOYSERKANI N M, HANSEN C R, et al. Quantification of chronic lymphedema in a revised mouse model[J]. Ann Plast Surg, 2018, 81(5):594-603. DOI:10.1097/SAP.0000000000001537 . |
32 | 柴凡, 梁燕, 姜军. 动物前肢淋巴水肿模型构建的实验研究[J]. 中华乳腺病杂志(电子版), 2011, 5(4):466-473. DOI:10.3969/j.issn.1674-0807.2011.04.011 . |
33 | 侯传强, 金星, 吴学君, 等. 慢性肢体淋巴水肿动物模型的构建[J]. 泰山医学院学报, 2012, 33(9):651-653. DOI:10.3969/j.issn.1004-7115.2012.09.003 . |
34 | 吴国君. 腋窝淋巴结清扫术后上肢继发性淋巴水肿动物模型建立的实验研究[D]. 济南: 山东大学, 2017. |
35 | CONGDON C C. The destructive effect of radiation on lymphatic tissue[J]. Cancer Res, 1966, 26(6):1211-1220. |
[1] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[4] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[5] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[6] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[7] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[8] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[9] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[10] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[11] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[12] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[13] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[14] | Danyang YIN, Yi HU, Rengfei SHI. Advances in Animal Aging Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 156-162. |
[15] | Haosheng WU, Hang SU, Chao ZHU, Wenhui WANG, Shengbing WU, Shuai CUI, Meiqi ZHOU. Research Progress of Animal Models of Stress Cardiomyopathy [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 173-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||