实验动物与比较医学 ›› 2025, Vol. 45 ›› Issue (6): 752-761.DOI: 10.12300/j.issn.1674-5817.2025.099

• 无脊椎实验动物:蝶类 • 上一篇    下一篇

蝶类演化研究体系的构建与分析进展

岳君佳俞(), 张蔚()()   

  1. 北京大学基因功能研究与操控全国重点实验室, 生命科学学院, 北大清华生命科学联合中心, 北京 100871
  • 收稿日期:2025-06-25 修回日期:2025-10-18 出版日期:2025-12-25 发布日期:2025-12-19
  • 通讯作者: 张蔚(1983—),女,博士,教授,研究方向:演化生物学。E-mail: weizhangvv@pku.edu.cn。ORCID: 0000-0002-6644-7046
  • 作者简介:岳君佳俞(1998—),女,博士研究生,研究方向:整合生命科学。E-mail: yjjy@stu.pku.edu.cn。ORCID: 0000-0001-8685-5664
  • 基金资助:
    国家自然科学基金杰出青年项目“蝶类拟态进化生物学”(32325009);国家自然科学基金面上项目“枯叶蛱蝶属的进化历史及适应机制”(32170420)

Progress in Construction and Analysis of Evolutionary Research Framework for Butterflies

YUE Junjiayu(), ZHANG Wei()()   

  1. State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
  • Received:2025-06-25 Revised:2025-10-18 Published:2025-12-25 Online:2025-12-19
  • Contact: ZHANG Wei (ORCID: 0000-0002-6644-7046), E-mail: weizhangvv@pku.edu.cn

摘要:

理解动物多样性的起源及其适应性演化机制,是现代生物学的核心问题之一。动物形态、体色、行为等性状由物种的遗传和发育以及环境因素协同塑造,其相互作用机制长期受到实验动物学界广泛关注。蝶类(Lepidoptera:Papilionoidea)因其分布广泛、翅图案多样化、生活史短以及便于人工饲养等特点,已成为研究动物演化的重要模式生物。本文介绍了蝶类翅的结构与功能,并总结了近年来其在适应性演化研究中的重要进展。为进一步理解蝶类翅图案的多样性,本文对相关机制进行了探讨。近年来,为揭示多种复杂性状的适应性演化规律,关于蝶类拟态及其遗传机制、季节型与表型可塑性,以及环境感知与相互作用等方面的研究正在不断深入。本文总结了当前在蝶类遗传、发育与演化层面的主要研究体系和方向,包括多种蝶类类群适应性演化的经典体系,例如:doublesex及相关基因决定了凤蝶属(Papilio)雌性特异的贝氏拟态;optix基因调控元件的改变,驱动了袖蝶属(Heliconius)不同物种间翅图案的趋同演化,为揭示米勒拟态的演化机制提供了分子层面的直接证据;以枯叶蛱蝶属(Kallima)为例,其叶形拟态由包含cortex基因的基因组区域所控制。除拟态性状外,本文也概述了蝶类旱雨季型的表型可塑性,其中鹿眼蛱蝶(Junonia coenia)与偏瞳蔽眼蝶(Bicyclus anynana)是研究环境适应与发育可塑性的经典模型。此外,蝶类还是研究复杂生物—环境相互作用的重要体系,包括柑橘凤蝶(Papilio xuthus)的视觉感知与色彩识别机制、菜粉蝶(Pieris rapae)与寄主植物协同演化,以及君主斑蝶(Danaus plexippus)的长距离迁飞与警戒色相关机制等。本文揭示了蝶类演化研究中整合多组学数据(如泛基因组、单细胞转录组等)解析基因调控网络的研究趋势;还从技术发展和研究方向拓展的角度对蝶类研究进行了展望,为动物演化研究提供了新思路。综上所述,蝶类研究体系形成了整合遗传、发育、环境相互作用及行为模拟的多学科交叉新范式。这一范式不仅深化了对生物适应性演化规律的理解,而且提供了可延伸的研究框架,推动了演化生物学与生态保护、工程应用以及生理疾病等领域的融合与创新。

关键词: 蝶类, 适应, 演化, 拟态, 翅图案

Abstract:

Understanding the origins of animal diversity and their adaptive evolutionary mechanisms is one of the core issues in modern biology. Animal traits such as morphology, coloration, and behavior are shaped synergistically by the species' genetics and development as well as environmental factors, and their interaction mechanisms have long received extensive attention in laboratory animal science. Butterflies (Lepidoptera: Papilionoidea), due to their wide distribution, diverse wing patterns, short life cycles, and ease of laboratory rearing, have become important model organisms for studying animal evolution. This review introduces the structure and function of butterfly wings, and summarizes important progress in adaptive evolution research in recent years. To further understand the diversity of butterfly wing patterns, this review also discusses the relevant mechanisms. In recent years, to reveal adaptive evolution patterns of multiple complex traits, research on butterfly mimicry and its genetic mechanisms, seasonal morphs, phenotypic plasticity, as well as environmental perception and interactions is continuously advancing. This review summarizes current main research systems and directions at genetic, developmental, and evolutionary levels of butterflies, including classic systems of adaptive evolution in various butterfly taxa, for example: Doublesex and related genes determine female-specific Batesian mimicry in Papilio. Changes in regulatory elements of the optix gene drive convergent evolution of wing patterns among different species in Heliconius, providing molecular-level direct evidence for revealing evolutionary mechanism of Müllerian mimicry. Taking Kallima as an example, its leaf mimicry is controlled by a genomic region containing the cortex gene. Besides mimicry traits, phenotypic plasticity of dry and rainy season morphs in butterflies is also summarized, among which Junonia coenia and Bicyclus anynana are classic models for studying environmental adaptation and developmental plasticity. In addition, butterflies are important systems for studying complex organism–environment interactions, including visual perception and color recognition mechanisms in Papilio xuthus, coevolution with host plants in Pieris rapae, and mechanisms related to long-distance migration and warning coloration in Danaus plexippus. This review reveals the research trend toward integrating multi-omics data (such as pangenome, single-cell transcriptome, etc.) to analyze gene regulatory networks in butterfly evolution studies. Prospects for butterfly research are also provided from perspectives of technological development and research direction expansion, offering new ideas for animal evolution research. In summary, butterfly research system has developed into a new interdisciplinary paradigm integrating genetics, development, environmental interactions and behavioral simulation. This paradigm not only deepens our understanding of biological adaptive evolution patterns, but also provides an extensible research framework, promoting integration and innovation between evolutionary biology and ecological conservation, engineering applications, and physiological disorders.

Key words: Butterfly, Adaptation, Evolutionary biology, Mimicry, Wing pattern

中图分类号: