实验动物与比较医学

• •    

蝶类演化研究体系的构建与分析进展

岳君佳俞(), 张蔚()()   

  1. 北京大学基因功能研究与操控全国重点实验室, 生命科学学院, 前沿交叉学科研究院, 生命科学联合中心, 北京 100871
  • 出版日期:2025-10-28
  • 作者简介:岳君佳俞(1998-),博士研究生,研究方向:整合生命科学。E-mail: yjjy@stu.pku.edu.cn。ORCID: 0000-0001-8685-5664;
    张蔚(1983-),博士,教授,研究方向:演化生物学。E-mail: weizhangvv@pku.edu.cn
  • 基金资助:
    国家自然科学基金杰出青年项目“蝶类拟态进化生物学”(32325009);国家自然科学基金面上项目“枯叶蛱蝶属的进化历史及适应机制”(32170420)

Progress in Constructing and Analyzing the Evolutionary Research Framework for Butterflies

YUE Junjiayu(), ZHANG Wei()()   

  1. State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China

摘要:

理解动物多样性的起源及其适应性演化机制,是现代生物学的核心问题之一。动物形态、体色、行为等性状由物种的遗传和发育以及环境因素协同塑造,其相互作用机制长期受到广泛关注。高通量测序和基因编辑等技术的发展,促进了非模式生物的演化生物学研究。蝶类(Lepidoptera: Papilionoidea)因其分布广泛、翅图案多样化、生活史短以及便于人工饲养等特点,已成为研究动物演化的重要模式生物。近年来,为了揭示多种复杂性状的适应性演化规律,关于蝶类拟态及其遗传机制、季节型与表型可塑性、以及环境感知与互作等方面的研究不断深入。本文总结了当前在蝶类遗传、发育与演化层面的主要研究体系和方向,包括多种蝶类类群适应性演化的经典体系,例如:(1)doublesexdsx) 及相关基因决定了凤蝶属(Papilio)雌性特异的贝氏拟态。(2)optix基因调控元件的改变,驱动了袖蝶属(Heliconius)不同物种间翅图案的趋同演化,为揭示穆氏拟态的演化提供了分子层面的直接证据。(3)以枯叶蛱蝶属(Kallima)为例,其叶形拟态由包含cortex基因的基因组区域所控制。除拟态性状外,本文也概述了蝶类旱雨季型的表型可塑性,鹿眼眼蝶(Junonia coenia)与美眼蛱蝶(Bicyclus anynana)是研究环境适应与发育可塑性的经典模型。此外,蝶类还是研究复杂生物—环境互作的重要体系,包括柑橘凤蝶(Papilio xuthus)的视觉感知与色彩识别机制、菜粉蝶(Pieris rapae)与寄主植物协同演化,以及君主斑蝶(Danaus plexippus)的长距离迁飞与警戒色相关机制等。本文揭示了蝶类演化研究中整合多组学数据(如泛基因组、单细胞转录组等)解析基因调控网络的研究趋势。本文还从技术发展和研究方向拓展的角度对蝶类研究进行了展望,为动物演化研究提供了新思路。综上所述,蝶类研究体系形成了整合遗传、发育、环境互作及行为模拟的多学科交叉新范式。这一范式不仅深化了对生物适应性演化规律的理解,并提供了可延伸的研究框架,推动了演化生物学与生态保护、工程应用以及生理疾病等领域的融合与创新。

关键词: 适应, 演化, 拟态, 翅图案, 蝶类

Abstract:

Understanding the origins of animal diversity and the mechanisms of adaptive evolution is one of the central questions in modern biology. Traits such as morphology, coloration, and behavior are shaped synergistically by the developmental and genetic mechanisms and environmental factors, and the studies about their interactions have long received extensive attention. The advent of high-throughput sequencing and gene-editing technologies, particularly CRISPR-Cas9, has revolutionized evolutionary developmental biology (evo-devo) by enabling detailed functional genetic studies in non-model organisms, thus bridging the gap between genotype and phenotype. Butterflies (Lepidoptera: Papilionoidea) have become a representative model system for studying animal evolution and development, owing to their wide distribution, diverse wing patterns, and short life cycles that facilitate laboratory rearing. In recent years, extensive research on mimicry phenotypes, seasonal morphs, phenotypic plasticity, and environmental interaction has uncovered the mechanisms of adaptive evolution of complex traits. This review summarizes studies on some classical examples of adaptive evolution. Recent progress has established several research systems for resolving the genetic, developmental, and evolutionary mechanisms underlying adaptive traits: (1) For Batesian mimicry, the doublesex (dsx) gene in the genus Papilio, together with related genes, governs female-limited mimicry and plays a central role in the evolution of sexually dimorphic wing patterns. (2) Other classical systems of adaptive evolution, such as the Heliconius mimicry rings, where regulatory modifications in key genes like optix govern the convergence of wing color patterns. Comparative genomic analyses reveal that distinct Heliconius species have independently evolved similar wing phenotypes through parallel changes in the regulatory elements of the same gene, providing molecular evidence and novel insights into the mechanisms underlying convergent evolution of mimicry patterns. (3) The remarkable leaf masquerade mimicry of Kallima butterflies is governed by a genomic locus containing the cortex gene, whose regulatory architecture underlies the evolution of leaf-like wing morphology and camouflage adaptation. Together, these taxa provide comparative insights into the genetic architecture and evolutionary dynamics of anti-predation strategies. The integrative approach moves beyond correlation to causation, precisely linking genetic variation to phenotypic outcomes through functional validation. Beyond mimicry, butterflies display different seasonal morphs and phenotypic plasticity in response to environmental variation. The contrasting wing patterns of Junonia coenia and Bicyclus anynana reveal how environmental cues shape developmental trajectories, offering classical models for studying adaptive plasticity. These systems collectively illustrate the dynamic responses to nature selection. Furthermore, butterflies serve as tractable models for investigating complex organism–environment interactions, including visual perception in Papilio xuthus, host-plant coevolution in Pieris rapae, and the interplay between long-distance migration and aposematism in Danaus plexippus. The above research progress demonstrates the research trend of integrating multi-omics data (pangenome and single-cell transcriptome) and gene regulatory networks in butterfly evolutionary studies. This review also provides an outlook on butterfly evolutionary research from the perspective of technological development and expansion of research directions, thereby shedding light on new ideas for animal evolutionary research. This paradigm not only deepens our understanding of universal principles in adaptive evolution but also provides a transferable framework for conservation science, bio-inspired engineering, and physiological disease mechanisms.

Key words: Adaption, Evolutionary biology, Mimicry, Wing patterning, Butterfly

中图分类号: