实验动物与比较医学 ›› 2024, Vol. 44 ›› Issue (4): 419-427.DOI: 10.12300/j.issn.1674-5817.2024.032
收稿日期:
2024-02-27
修回日期:
2024-08-02
出版日期:
2024-09-06
发布日期:
2024-08-25
通讯作者:
杜小燕(1971—),女,博士,教授,研究方向:实验动物资源模型培育和遗传检测。E-mail: duduyan@ccmu.edu.cn。ORCID: 0000-0002-4030-7299作者简介:
张梓珊(2003—),女,本科在读。E-mail: zishangyangyang@163.com
基金资助:
ZHANG Zishan, WU Ying, LI Feiyang, DU Xiaoyan()(
)
Received:
2024-02-27
Revised:
2024-08-02
Published:
2024-08-25
Online:
2024-09-06
Contact:
DU Xiaoyan (ORCID: 0000-0002-4030-7299), E-mail: duduyan@ccmu.edu.cn摘要:
目前分布在世界各地的实验动物长爪沙鼠均源自中国。早在1930年代,野生长爪沙鼠经人工驯养后被引入医学研究。时至今日,长爪沙鼠已经成为一种公认的“多功能实验动物”,被广泛应用于脑神经、寄生虫和微生物、肿瘤等研究领域。长爪沙鼠具有独特的脑底动脉解剖学特点,例如先天性Willis环缺失。因此,用单侧颈总动脉结扎的简易手术操作既可以构建脑缺血或脑缺血再灌注损伤模型,还可以实现同体对照。长爪沙鼠的这一解剖特点不仅增加了脑缺血的敏感性,也易于诱导耳蜗缺血。因此,长爪沙鼠在制备听觉障碍模型中也发挥重要作用。长爪沙鼠脑缺血模型和听觉障碍模型的发病过程和病理表现均与人类患者有诸多相似之处。科学家们利用长爪沙鼠构建了脑缺血模型、脑缺血再灌注损伤模型、耳蜗缺血模型、人工耳蜗植入模型、感音性神经性耳聋模型等,均取得显著成效。本文重点阐述当前长爪沙鼠脑缺血模型和听觉障碍模型的创制方法和评价指标,讨论各种造模方法的优缺点及其应用进展,以期为长爪沙鼠在这两个重要领域的应用提供理论依据和借鉴。
中图分类号:
张梓珊,伍颖,李飞扬,等. 长爪沙鼠脑缺血和听觉障碍模型研究进展[J]. 实验动物与比较医学, 2024, 44(4): 419-427. DOI: 10.12300/j.issn.1674-5817.2024.032.
ZHANG Zishan,WU Ying,LI Feiyang,et al. Research Advances in Mongolian Gerbil Models of Cerebral Ischemia and Auditory Impairment[J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 419-427. DOI: 10.12300/j.issn.1674-5817.2024.032.
图1 Willis环变异患者与长爪沙鼠脑缺血模型的机制关联(用Figdraw软件绘制)注:A为临床上Willis环变异患者的主要缺损情况;B为通过阻断长爪沙鼠双侧颈动脉或单侧颈动脉制备全脑缺血模型和半脑缺血模型。
Figure 1 Mechanistic association between patients with variations in the Willis’circle and Mongolian gerbil cerebral ischemia model (Drawn by Figdraw software)Note:Main defects in patients with variations in the Willis' circle (A); preparation of global cerebral ischemia and hemispheric cerebral ischemia models by blocking bilateral or unilateral carotid arteries in Mongolian gerbils (B).
1 | 李长龙, 杜小燕, 陈振文. 长爪沙鼠资源开发利用进展[J]. 中国实验动物学报, 2014, 22(6):106-109, 113. DOI: 10.3969/j.issn.1005-4847.2014.06.020 . |
LI C L, DU X Y, CHEN Z W. Advances in development and application of Mongolian gerbil resource[J]. Acta Lab Animalis Sci Sin, 2014, 22(6):106-109, 113. DOI: 10.3969/j.issn.1005-4847.2014.06.020 . | |
2 | LEVINE S, PAYAN H. Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus)[J]. Exp Neurol, 1966, 16(3):255-262. DOI: 10.1016/0014-4886(66)90062-8 . |
3 | FINCK A, SCHNECK C D, HARTMAN A F. Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus)[J]. J Comp Physiol Psychol, 1972, 78(3):375-380. DOI: 10.1037/h0032373 . |
4 | VINCENT A L, RODRICK G E, SODEMAN W A. The Mongolian gerbil in aging research[J]. Exp Aging Res, 1980, 6(3):249-260. DOI: 10.1080/03610738008258361 . |
5 | FELICE C D, CAPUA B D, TASSI R, et al. Non-functioning posterior communicating arteries of circle of Willis in idiopathic sudden hearing loss[J]. Lancet, 2000, 356(9237):1237-1238. DOI: 10.1016/S0140-6736(00)02790-2 . |
6 | DE CAPUA B, DE FELICE C, D'ONZA M, et al. Idiopathic sudden hearing loss: role of the posterior communicating cerebral arteries of the Willis' circle[J]. Acta Otorhinolaryngol Ital, 2001, 21(3):144-150. |
7 | MENDELSON S J, PRABHAKARAN S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11):1088-1098. DOI: 10.1001/jama.2020.26867 . |
8 | LIN E, KAMEL H, GUPTA A, et al. Incomplete circle of Willis variants and stroke outcome[J]. Eur J Radiol, 2022, 153:110383. DOI: 10.1016/j.ejrad.2022.110383 . |
9 | 蔡冠晖, 郑志研, 李林蔚, 等. Willis环变异与颈动脉狭窄及脑缺血疾病关系CTA研究[J]. 影像研究与医学应用, 2019, 5(15):35-37. DOI:CNKI:SUN:YXYY.0.2019-15-019 . |
CAI G H, ZHENG Z Y, LI L W, et al. The association of Circle of Willis variants with carotid artery stenosis and brain ischemia: CTA study[J]. J Imag Res Med Appl, 2019, 5(15):35-37. DOI:CNKI:SUN:YXYY.0.2019-15-019 . | |
10 | ŠIRVINSKAS A, LENGVENIS G, LEDAS G, et al. Circle of Willis configuration and Thrombus localization impact on ischemic stroke patient outcomes: a systematic review[J]. Medicina, 2023, 59(12):2115. DOI: 10.3390/medicina59122115 . |
11 | 张贺, 陈振文, 王承利, 等. 长爪沙鼠不同willis血管类型全基因组文库构建[J]. 中国比较医学杂志, 2014, 24(11):27-31, 32. DOI: 10.3969/j.issn.1671.7856.2014.011.006 . |
ZHANG H, CHEN Z W, WANG C L, et al. Genomic library construction of different Willis circle in Meriones unguiculatus [J]. Chin J Comp Med, 2014, 24(11):27-31, 32. DOI: 10.3969/j.issn.1671.7856.2014.011.006 . | |
12 | 郑振峰, 杜小燕, 王迎, 等. 长爪沙鼠脑底动脉Willis环变异缺失类型与脑缺血模型症状相关性分析[J]. 中国兽医学报, 2011, 31(6):908-912. DOI:CNKI:SUN:ZSYX.0.2011-06-029 . |
ZHENG Z F, DU X Y, WANG Y, et al. Analysis of the relationship between the variation of Willis circle and the symptoms of ischemic model in gerbils[J]. Chin J Vet Sci, 2011, 31(6):908-912. DOI:CNKI:SUN:ZSYX.0.2011-06-029 . | |
13 | SEAL J B, BUCHH B N, MARKS J D. New variability in cerebrovascular anatomy determines severity of hippocampal injury following forebrain ischemia in the Mongolian gerbil[J]. Brain Res, 2006, 1073-1074:451-459. DOI: 10.1016/j.brainres.2005.12.024 . |
14 | 杜小燕, 杨慧, 孟霞, 等. 长爪沙鼠脑底前后交通动脉变异类型分析[J]. 中国实验动物学报, 2006, 14(2):111-113, 封三. DOI: 10.3969/j.issn.1005-4847.2006.02.009 . |
DU X Y, YANG H, MENG X, et al. Variation of anatomical patterns of brain anterior and posterior communication arteries in Mongolian gerbils[J]. Acta Lab Anim Sci Sin, 2006, 14(2):111-113, inside back cover. DOI: 10.3969/j.issn.1005-4847.2006.02.009 . | |
15 | DU X Y, ZHU X D, DONG G, et al. Characteristics of circle of Willis variations in the Mongolian gerbil and a newly established ischemia-prone gerbil group[J]. ILAR J, 2011, 52(1): E1-E7. DOI: 10.1093/ilar.52.1.e1 . |
16 | DU X Y, WANG D P, LI Y, et al. Newly breeding an inbred strain of ischemia-prone Mongolian gerbils and its reproduction and genetic characteristics[J]. Exp Anim, 2018, 67(1):83-90. DOI: 10.1538/expanim.17-0071 . |
17 | ABE Y, TOYAMA K, SHINOHARA A, et al. Message to researchers: the characteristic absence of a posterior communicating artery is easily lost in the gerbil[J]. Anat Sci Int, 2023, 98(3):426-433. DOI: 10.1007/s12565-022-00698-z . |
18 | GAUDET R J, LEVINE L. Effect of unilateral common carotid artery occlusion on levels of prostaglandins D2, F2 alpha and 6-keto-prostaglandin F1 alpha in gerbil brain[J]. Stroke, 1980, 11(6):648-652. DOI: 10.1161/01.str.11.6.648 . |
19 | 杜小燕, 杨慧, 王钜. 长爪沙鼠脑缺血模型的建立及脑组织中超氧歧化酶和丙二醛含量的测定[J]. 中国比较医学杂志, 2006, 16(11):664-667, 封二. DOI: 10.3969/j.issn.1671-7856.2006.11.008 . |
DU X Y, YANG H, WANG J. Model foundation of cerebral ischemia and determination of SOD and MDA in brain of Mongolian gerbil after cerebral ischemia[J]. Chin J Comp Med, 2006, 16(11):664-667, inside front cover. DOI: 10.3969/j.issn.1671-7856.2006.11.008 . | |
20 | MAEDA M, AKAI F, NISHIDA S, et al. Intracerebral distribution of albumin after transient cerebral ischemia: light and electron microscopic immunocytochemical investigation[J]. Acta Neuropathol, 1992, 84(1):59-66. DOI: 10.1007/BF00427216 . |
21 | TANAKA K, FUKUUCHI Y, GOMI S, et al. Alteration of second-messenger ligand binding following 2-hr hemispheric ischemia in the gerbil brain[J]. Exp Neurol, 1992, 117(3):254-259. DOI: 10.1016/0014-4886(92)90134-c . |
22 | AHN J H, SONG M, KIM H, et al. Differential regional infarction, neuronal loss and gliosis in the gerbil cerebral hemisphere following 30 min of unilateral common carotid artery occlusion[J]. Metab Brain Dis, 2019, 34(1):223-233. DOI: 10.1007/s11011-018-0345-9 . |
23 | YAGITA Y, MATSUMOTO M, KITAGAWA K, et al. DNA cleavage and proteolysis of microtubule-associated protein 2 after cerebral ischemia of different severity[J]. Neuroscience, 1999, 92(4):1417-1424. DOI: 10.1016/s0306-4522(99)00079-2 . |
24 | FUKUOKA S, YEH H, MANDYBUR T I, et al. Effect of insulin on acute experimental cerebral ischemia in gerbils[J]. Stroke, 1989, 20(3):396-399. DOI: 10.1161/01.str.20.3.396 . |
25 | KUROIWA T, ITO U, HAKAMATA Y, et al. Evolution of energy failure after repeated cerebral ischemia in gerbils[C]//Brain Edema XI. Vienna: Springer, 2000:43-46. DOI: 10.1007/978-3-7091-6346-7_9 . |
26 | BERRY K, WIŚNIEWSKI H M, SVARZBEIN L, et al. On the relationship of brain vasculature to production of neurological deficit and morphological changes following acute unilateral common carotid artery ligation in gerbils[J]. J Neurol Sci, 1975, 25(1):75-92. DOI: 10.1016/0022-510x(75)90188-4 . |
27 | WU Y, HU C J, LI Z H, et al. Development of a new cerebral ischemia reperfusion model of Mongolian gerbils and standardized evaluation system[J]. Animal Model Exp Med, 2024, 7(1):48-55. DOI: 10.1002/ame2.12378 . |
28 | LEÓN-MORENO L C, CASTAÑEDA-ARELLANO R, RIVAS-CARRILLO J D, et al. Challenges and improvements of developing an ischemia mouse model through bilateral common carotid artery occlusion[J]. J Stroke Cerebrovasc Dis, 2020, 29(5):104773. DOI: 10.1016/j.jstrokecerebrovasdis. 2020.104773 . |
29 | ISLAM M S, SHIN H Y, YOO Y J, et al. Fermented Mentha arvensis administration provides neuroprotection against transient global cerebral ischemia in gerbils and SH-SY5Y cells via downregulation of the MAPK signaling pathway[J]. BMC Complement Med Ther, 2022, 22(1):172. DOI: 10.1186/s12906-022-03653-7 . |
30 | DU BOIS M, BOWMAN P D, GOLDSTEIN G W. Cell proliferation after ischemic infarction in gerbil brain[J]. Brain Res, 1985, 347(2):245-252. DOI: 10.1016/0006-8993(85)90183-0 . |
31 | PARK J H, LEE T K, KIM D W, et al. Neuroprotective effects of aucubin against cerebral ischemia and ischemia injury through the inhibition of the TLR4/NF-κB inflammatory signaling pathway in gerbils[J]. Int J Mol Sci, 2024, 25(6):3461. DOI: 10.3390/ijms25063461 . |
32 | 张震, 王进, 王世全, 等. 小鼠全脑缺血模型的研究进展[J]. 神经解剖学杂志, 2021, 37(6):709-712. DOI: 10.16557/j.cnki.1000-7547.2021.06.016 . |
ZHANG Z, WANG J, WANG S Q, et al. Research progress of global cerebral ischemia model in mice[J]. Chin J Neuroanat, 2021, 37(6):709-712. DOI: 10.16557/j.cnki.1000-7547.2021.06.016 . | |
33 | KIRINO T, SANO K. Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus[J]. Acta Neuropathol, 1984, 62(3):209-218. DOI: 10.1007/BF00691854 . |
34 | KONDO T, YOSHIDA S, NAGAI H, et al. Transient forebrain ischemia induces impairment in cognitive performance prior to extensive neuronal cell death in Mongolian gerbil (Meriones unguiculatus)[J]. J Vet Sci, 2018, 19(4):505-511. DOI: 10.4142/jvs.2018.19.4.505 . |
35 | UEDA H, TAGAWA K, FURUYA E, et al. A combined analysis of regional energy metabolism and immunohistochemical ischemic damage in the gerbil brain[J]. J Neurochem, 1999, 72(3):1232-1242. DOI: 10.1046/j.1471-4159.1999.0721232.x . |
36 | YANG E J, CAI M D, LEE J H. Neuroprotective effects of electroacupuncture on an animal model of bilateral common carotid artery occlusion[J]. Mol Neurobiol, 2016, 53(10):7228-7236. DOI: 10.1007/s12035-015-9610-7 . |
37 | PARK J H, LEE T K, KIM D W, et al. Neuroprotective effects of salicin in a gerbil model of transient forebrain ischemia by attenuating oxidative stress and activating PI3K/akt/GSK3β pathway[J]. Antioxidants, 2021, 10(4):629. DOI: 10.3390/antiox10040629 . |
38 | KIM H, AHN J H, SONG M, et al. Pretreated fucoidan confers neuroprotection against transient global cerebral ischemic injury in the gerbil hippocampal CA1 area via reducing of glial cell activation and oxidative stress[J]. Biomedecine Pharmacother, 2019, 109:1718-1727. DOI: 10.1016/j.biopha. 2018.11.015 . |
39 | PARK J H, AHN J H, LEE T K, et al. Laminarin pretreatment provides neuroprotection against forebrain ischemia/reperfusion injury by reducing oxidative stress and neuroinflammation in aged gerbils[J]. Mar Drugs, 2020, 18(4):213. DOI: 10.3390/md18040213 . |
40 | 周洁, 曾晓云, 罗志秀, 等. 丹红注射液对沙鼠前脑缺血再灌注后脑组织的神经保护作用[J]. 中国临床药理学杂志, 2021, 37(3):255-257, 261. DOI: 10.13699/j.cnki.1001-6821.2021.03.011 . |
ZHOU J, ZENG X Y, LUO Z X, et al. Neuroprotective effect of Danhong Injection on cerebral tissue of Mongolian Gerbils after forebrain ischemia-reperfusion[J]. Chin J Clin Pharmacol, 2021, 37(3):255-257, 261. DOI: 10.13699/j.cnki.1001-6821.2021.03.011 . | |
41 | RYUK J A, KO B S, MOON N R, et al. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis[J]. Antioxidants, 2022, 11(1):168. DOI: 10.3390/antiox11010168 . |
42 | SONG M, AHN J H, KIM H, et al. Chronic high-fat diet-induced obesity in gerbils increases pro-inflammatory cytokines and mTOR activation, and elicits neuronal death in the striatum following brief transient ischemia[J]. Neurochem Int, 2018, 121:75-85. DOI: 10.1016/j.neuint. 2018.09.009 . |
43 | PARK J H, AHN J H, SONG M, et al. A 2-Min transient ischemia confers cerebral ischemic tolerance in non-obese gerbils, but results in neuronal death in obese gerbils by increasing abnormal mTOR activation-mediated oxidative stress and neuroinflammation[J]. Cells, 2019, 8(10):1126. DOI: 10.3390/cells8101126 . |
44 | KIRINO T. Delayed neuronal death[J]. Neuropathology, 2000, 20(Suppl): S95-S97. DOI: 10.1046/j.1440-1789.2000.00306.x. |
45 | LEE T K, KIM H, SONG M, et al. Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia[J]. Neural Regen Res, 2019, 14(8):1394-1403. DOI: 10.4103/1673-5374.253524 . |
46 | LEE J C, PARK J H, AHN J H, et al. New GABAergic neurogenesis in the hippocampal CA1 region of a gerbil model of long-term survival after transient cerebral ischemic injury[J]. Brain Pathol, 2016, 26(5):581-592. DOI: 10.1111/bpa.12334 . |
47 | LEE J C, PARK J H, KIM I H, et al. Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia[J]. Brain Pathol, 2017, 27(3):276-291. DOI: 10.1111/bpa.12389 . |
48 | LONGA E Z, WEINSTEIN P R, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91. DOI: 10.1161/01.str.20.1.84 . |
49 | RICO J L, MUÑOZ-TABARES L F, LAMPREA M R, et al. Diazepam reduces escape and increases closed-arms exploration in gerbils after 5 min in the elevated plus-maze[J]. Front Psychol, 2019, 10:748. DOI: 10.3389/fpsyg.2019.00748 . |
50 | 李晓蕾, 李忠华, 王鹏. STEAP3在脑缺血再灌注损伤沙鼠中的表达及意义[J]. 中国医科大学学报, 2023, 52(1):57-61, 67. DOI: 10.12007/j.issn.0258-4646.2023.01.011 . |
LI X L, LI Z H, WANG P. Expression of STEAP3 and its significance in gerbils with cerebral ischemia-reperfusion injury[J]. J China Med Univ, 2023, 52(1):57-61, 67. DOI: 10.12007/j.issn.0258-4646.2023.01.011 . | |
51 | LEWCZUK A, BORATYŃSKA-JASIŃSKA A, ZABŁOCKA B. Validation of the reference genes for expression analysis in the hippocampus after transient ischemia/reperfusion injury in gerbil brain[J]. Int J Mol Sci, 2023, 24(3):2756. DOI: 10.3390/ijms24032756 . |
52 | ZORIO D A R, MONSMA S, SANES D H, et al. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome[J]. Genomics, 2019, 111(3):441-449. DOI: 10.1016/j.ygeno.2018.03.001 . |
53 | TSUZUKI N, WASANO K. Idiopathic sudden sensorineural hearing loss: a review focused on the contribution of vascular pathologies[J]. Auris Nasus Larynx, 2024, 51(4):747-754. DOI: 10.1016/j.anl.2024.05.009 . |
54 | 冯彪, 邱建华. 耳蜗缺血损伤动物模型的建立[J]. 听力学及言语疾病杂志, 2008, 16(6):502-505. DOI: 10.3969/j.issn.1006-7299.2008.06.018 . |
FENG B, QIU J H. A guinea pig model of cochlear ischemia[J]. J Audiol Speech Pathol, 2008, 16(6):502-505. DOI: 10.3969/j.issn.1006-7299.2008.06.018 . | |
55 | LIN N T, URATA S, COOK R, et al. Sex differences in the auditory functions of rodents[J]. Hear Res, 2022, 419:108271. DOI: 10.1016/j.heares.2021.108271 . |
56 | OGAWA H, OKADA M, SHUDOU M, et al. Prevention of ischemia-induced hearing loss by intravenous administration of hydrogen-rich saline in gerbil[J]. Neurosci Lett, 2018, 665:195-199. DOI: 10.1016/j.neulet.2017.12.013 . |
57 | REN T, BROWN N J, ZHANG M, et al. A reversible ischemia model in gerbil cochlea[J]. Hear Res, 1995, 92(1-2):30-37. DOI: 10.1016/0378-5955(95)00192-1 . |
58 | MOM T, AVAN P, BONFILS P, et al. A model of cochlear function assessment during reversible ischemia in the Mongolian gerbil[J]. Brain Res Brain Res Protoc, 1999, 4(3):249-257. DOI: 10.1016/s1385-299x(99)00026-4 . |
59 | AFIA F E, GIRAUDET F, GILAIN L, et al. Resistance of gerbil auditory function to reversible decrease in cochlear blood flow[J]. Audiol Neurootol, 2017, 22(2):89-95. DOI: 10.1159/000478650 . |
60 | CHOUDHURY N, CHEN F Y, SHI X R, et al. Volumetric imaging of blood flow within cochlea in gerbil in vivo [J]. IEEE J Sel Top Quantum Electron, 2010, 16(3):524-529. DOI: 10.1109/JSTQE.2009.2032671 . |
61 | VELDE H M, RADEMAKER M M, DAMEN J, et al. Prediction models for clinical outcome after cochlear implantation: a systematic review[J]. J Clin Epidemiol, 2021, 137:182-194. DOI: 10.1016/j.jclinepi.2021.04.005 . |
62 | HUTSON K A, PULVER S H, ARIEL P, et al. Light sheet microscopy of the gerbil cochlea[J]. J Comp Neurol, 2021, 529(4):757-785. DOI: 10.1002/cne.24977 . |
63 | RAHMAN M T, CHARI D A, ISHIYAMA G, et al. Cochlear implants: causes, effects and mitigation strategies for the foreign body response and inflammation[J]. Hear Res, 2022, 422:108536. DOI: 10.1016/j.heares.2022.108536 . |
64 | RISOUD M, SIRCOGLOU J, DEDIEU G, et al. Imaging and cell count in cleared intact cochlea in the Mongolian gerbil using laser scanning confocal microscopy[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2017, 134(4):221-224. DOI: 10.1016/j.anorl.2017.01.001 . |
65 | TOULEMONDE P, RISOUD M, LEMESRE P E, et al. 3D analysis of gerbil cochlea with cochlear implant[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2022, 139(6):333-336. DOI: 10.1016/j.anorl.2022.03.002 . |
66 | CHOUDHURY B, ADUNKA O F, AWAN O, et al. Electrophysiologic consequences of flexible electrode insertions in gerbils with noise-induced hearing loss[J]. Otol Neurotol, 2014, 35(3):519-525. DOI: 10.1097/MAO.0b013e31829bdf2b . |
67 | GUI F, SONG D D, WANG H Y, et al. Exogenous neuritin restores auditory following cochlear spiral ganglion neuron denervation of gerbils[J]. Neurosci Res, 2024, 200:8-19. DOI: 10.1016/j.neures.2023.11.001 . |
68 | NATARAJAN N, BATTS S, STANKOVIC K M. Noise-induced hearing loss[J]. J Clin Med, 2023, 12(6):2347. DOI: 10.3390/jcm12062347 . |
69 | MA L, YI H J, YUAN F Q, et al. An efficient strategy for establishing a model of sensorineural deafness in rats[J]. Neural Regen Res, 2015, 10(10):1683-1689. DOI: 10.4103/1673-5374.153704 . |
70 | 宋丹丹, 桂飞, 汪海燕, 等. 长爪沙鼠不同感音神经性耳聋模型的建立及比较[J]. 石河子大学学报(自然科学版), 2024, 42(1):70-75. DOI: 10.13880/j.cnki.65-1174/n.2023.22.043 . |
SONG D D, GUI F, WANG H Y, et al. Establishment and comparison of sensorineural deafness models in Mongolian gerbils[J]. J Shihezi Univ Nat Sci, 2024, 42(1):70-75. DOI: 10.13880/j.cnki.65-1174/n.2023.22.043 . | |
71 | CASTAÑO-GONZÁLEZ K, KÖPPL C, PYOTT S J. The crucial role of diverse animal models to investigate cochlear aging and hearing loss[J]. Hear Res, 2024, 445:108989. DOI: 10.1016/j.heares.2024.108989 . |
72 | WANG Y, ZHAO P K, SONG Z D, et al. Generation of gene-knockout Mongolian gerbils via CRISPR/Cas9 system[J]. Front Bioeng Biotechnol, 2020, 8:780. DOI: 10.3389/fbioe.2020.00780 . |
73 | 周珺, 许向阳, 张长青, 等. 重度抑郁症啮齿类动物模型研究进展[J]. 中国药理学通报, 2021, 37(12):1648-1653. DOI: 10.3969/j.issn.1001-1978.2021.12.005 . |
ZHOU J, XU X Y, ZHANG C Q, et al. Research progress in rodent modeling of major depressive disorder[J]. Chin Pharmacol Bull, 2021, 37(12):1648-1653. DOI: 10.3969/j.issn.1001-1978.2021.12.005 . |
[1] | 卢领群, 郭红刚, 石巧娟, 戴方伟, 褚晓峰. 不同月龄长爪沙鼠的肾脏组织学特征[J]. 实验动物与比较医学, 2023, 43(1): 61-66. |
[2] | 王志远, 刘月环. 长爪沙鼠肝脏基因组DNA甲基化水平检测[J]. 实验动物与比较医学, 2018, 38(1): 44-47. |
[3] | 李迎, 杜小燕, 崔晓霞, 马兰芝, 尚世臣, 何晓亚, 黄斌, 赵权, 李桂军, 王冬平, 陈振文. 长爪沙鼠近交系培育中血液生理生化指标的变化[J]. 实验动物与比较医学, 2018, 38(1): 48-53. |
[4] | 李迎, 杜小燕, 崔晓霞, 马兰芝, 尚世臣, 黄斌, 赵权, 李桂军, 王冬平, 陈振文. CMU/1和CMU/2长爪沙鼠繁殖性能与生长发育观测[J]. 实验动物与比较医学, 2018, 38(1): 54-56. |
[5] | 李迎, 杜小燕, 崔晓霞, 马兰芝, 尚世臣, 赵志兵, 赵权, 李桂军, 王冬平, 陈振文. CMU/1和CMU/2长爪沙鼠与F344大鼠及BALB/c小鼠4项凝血指标分析[J]. 实验动物与比较医学, 2018, 38(1): 57-59. |
[6] | 李迎, 陈振文, 马兰芝, 尚世臣, 尚玉璞, 赵权, 李桂军, 崔晓霞, 王冬平, 杜小燕. 近交系长爪沙鼠生化标记遗传监测方法的建立及其应用[J]. 实验动物与比较医学, 2017, 37(6): 442-447. |
[7] | 李迎, 崔晓霞, 杜小燕, 马兰芝, 尚世臣, 黄斌, 郭子潇, 赵权, 李桂军, 王冬平, 陈振文. 近交系CMU/1和CMU/2长爪沙鼠Willis环缺失与生理生化参数比较[J]. 实验动物与比较医学, 2017, 37(6): 470-474. |
[8] | 王存龙, 杜小燕, 刘欣, 郭萌, 吕建祎, 陈振文, 李长龙. 雌二醇诱导雄性长爪沙鼠乳腺增生模型的初探[J]. 实验动物与比较医学, 2017, 37(5): 352-356. |
[9] | 王菲菲, 龚菁菁, 霍学云, 路静, 郭萌, 刘欣, 李长龙, 杜小燕, 陈振文, 吕建祎. 自发性糖尿病长爪沙鼠环氧化酶(COX)-2在三种组织中的表达[J]. 实验动物与比较医学, 2017, 37(2): 118-122. |
[10] | 李银银, 龚菁菁, 吴绍亮, 李小红, 王存龙, 霍学云, 路静, 吕建祎, 刘欣, 郭萌, 李长龙, 陈振文, 杜小燕. ND3在自发性糖尿病长爪沙鼠5种组织中的表达[J]. 实验动物与比较医学, 2017, 37(1): 6-10. |
[11] | 王吉, 卫礼, 付瑞, 李晓波, 王淑菁, 邢进, 冯育芳, 巩薇, 岳秉飞, 贺争鸣. 长爪沙鼠淋巴细胞脉络丛脑膜炎病毒抗体ELISA检测方法的建立与应用[J]. 实验动物与比较医学, 2015, 35(6): 473-477. |
[12] | 刘月环, 王志远, 杜江涛, 吴旧生, 余陈欢, 陈文文, 应华忠. 长爪沙鼠高脂血症的初步研究[J]. 实验动物与比较医学, 2014, 34(5): 365-371. |
[13] | 任晓丽, 林刚, 王洁洁, 杜季梅. 蜂胶对幽门螺杆菌感染长爪沙鼠胃黏膜影响的初步观察[J]. 实验动物与比较医学, 2014, 34(4): 303-307. |
[14] | 王吉, 付瑞, 卫礼, 李晓波, 冯育芳, 王淑菁, 巩薇, 岳秉飞, 贺争鸣. 小鼠腺病毒PCR检测方法的建立及初步应用[J]. 实验动物与比较医学, 2014, 34(1): 35-41. |
[15] | 韦永芳, 梁成结, 刘寒英, 冯媛瑜. 异种动物代乳用于剖宫产长爪沙鼠种群净化[J]. 实验动物与比较医学, 2013, 33(6): 444-447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||