1 |
迟小惠, 冯友军, 郑焙文. 耐药菌在人-动物-环境中的传播和遗传机制[J]. 微生物学通报, 2019, 46( 2): 311- 318. DOI: 10.13344/j.microbiol.china.180864 .
|
|
CHI X H, FENG Y J, ZHENG B W. Transmission and genetic mechanism of drug-resistant bacteria in multi-sectors[J]. Microbiol China, 2019, 46( 2): 311- 318. DOI: 10.13344/j.microbiol.china.180864 .
|
2 |
马瑞芬, 张文羿, 张和平, 等. 细菌抗生素耐药机制研究进展[J]. 中国微生态学杂志, 2014, 26( 7): 854- 857. DOI: 10.13381/j.cnki.cjm.201407032 .
|
|
MA R F, ZHANG W Y, ZHANG H P, et al. Mechanisms of bacterial antibiotic resistance: progress in studies[J]. Chin J Microecol, 2014, 26( 7): 854- 857. DOI: 10.13381/j.cnki.cjm.201407032 .
|
3 |
DOUDNA J A, CHARPENTIER E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346( 6213): 1258096. DOI: 10.1126/science. 1258096 .
|
4 |
JIANG F, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46: 505- 529. DOI: 10.1146/annurev-biophys-062215-010822 .
|
5 |
WANG Y, ZHANG Z T, SEO S O, et al. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable clean mutant selection in Clostridium beijerinckii as an example[J]. ACS Synth Biol, 2016, 5( 7): 721- 732. DOI: 10.1021/acssynbio.6b00060 .
|
6 |
徐艳, 崔玉晓, 杨洋, 等. CRISPR/Cas系统抵御细菌耐药[J]. 生态毒理学报, 2018, 13( 3): 1- 8. DOI: 10.7524/AJE.1673-5897.20170804001 .
|
|
XU Y, CUI Y X, YANG Y, et al. CRISPR/cas system resist to bacterial resistance[J]. Asian J Ecotoxicol, 2018, 13( 3): 1- 8. DOI: 10.7524/AJE.1673-5897.20170804001 .
|
7 |
杨萍, 孙兵兵, 杨俊杰, 等. CRISPR-Cas系统的抗耐药菌应用[J]. 中国抗生素杂志, 2018, 43( 8): 927- 931. DOI: 10.13461/j.cnki.cja.006318 .
|
|
YANG P, SUN B B, YANG J J, et al. The application of CISPR-Cas system in antibacterial resistance[J]. Chin J Antibiot, 2018, 43( 8): 927- 931. DOI: 10.13461/j.cnki.cja.006318 .
|
8 |
孙东昌, 裘娟萍. Ⅰ-E型CRISPR/Cas系统介导适应性免疫分子机制研究进展[J]. 微生物学报, 2016, 56( 1): 1- 7. DOI: 10.13343/j.cnki.wsxb.20150132 .
|
|
SUN D C, QIU J P. Advances in molecular mechanisms of adaptive immunity mediated by type Ⅰ-E CRISPR/Cas system‒A review[J]. Acta Microbiologica Sinica, 2016, 56( 1): 1- 7. DOI: 10.13343/j.cnki.wsxb.20150132 .
|
9 |
张云鹏, 温彤, 姜伟. 大肠杆菌和酵母表达系统的研究进展[J]. 生物技术进展, 2014, 4( 6): 389- 393. DOI: 10.3969/j.issn.2095-2341.2014.06.02 .
|
|
ZHANG Y P, WEN T, JIANG W. The research progress of Escherichia coli expression systems and yeast expression systems[J]. Curr Biotechnol, 2014, 4( 6): 389- 393. DOI: 10.3969/j.issn.2095-2341.2014.06.02 .
|
10 |
徐娜娜, 范文廷, 毕茹茹, 等. 功能性便秘患者肠道菌群分析及肠道菌群调节作用的研究进展[J]. 临床检验杂志, 2018, 36( 1): 34- 36. DOI: 10.13602/j.cnki.jcls.2018.01.10 .
|
|
XU N N, FAN W T, BI R R, et al. Analysis of intestinal flora in patients with functional constipation and research progress on its regulation[J]. Chin J Clin Lab Sci, 2018, 36( 1): 34- 36. DOI: 10.13602/j.cnki.jcls.2018.01.10 .
|
11 |
王梦颖, 赵国忠, 韩俊燕, 等. 食源性乳酸菌的分离及其在小鼠肠道的定植能力[J]. 中国食品学报, 2018, 18( 5): 239- 245. DOI: 10.16429/j.1009-7848.2018.05.028 .
|
|
WANG M Y, ZHAO G Z, HAN J Y, et al. Isolation of foodborne lactic acid bacteria and detection of the colonization ability in mouse intestinal tract[J]. J Chin Inst Food Sci Technol, 2018, 18( 5): 239- 245. DOI: 10.16429/j.1009-7848.2018.05.028 .
|
12 |
WANG Y P, WANG J R, DAI W L. Use of GFP to trace the colonization of Lactococcus lactis WH-C1 in the gastro-intestinal tract of mice[J]. J Microbiol Methods, 2011, 86( 3): 390- 392. DOI: 10.1016/j.mimet.2011.06.009 .
|
13 |
O'HARA A M, O'REGAN P, FANNING A, et al. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius [J]. Immunology, 2006, 118( 2): 202- 215. DOI: 10.1111/j.1365-2567.2006.02358.x .
|
14 |
KIRO R, GOREN M G, YOSEF I, et al. CRISPR adaptation in Escherichia coli subtypeI-E system[J]. Biochem Soc Trans, 2013, 41( 6): 1412- 1415. DOI: 10.1042/BST20130109 .
|
15 |
常新耀, 谢红兵, 魏刚才, 等. 鸡大肠杆菌的生化特性·致病性及药敏试验研究[J]. 安徽农业科学, 2008, 36( 11): 4536- 4538.
|
|
CHANG X Y, XIE H B, WEI G C, et al. Study on the biochemistry characteristic and pathogenicity of E. coli and its drug sensitivity test[J]. J Anhui Agric Sci, 2008, 36( 11): 4536- 4538.
|
16 |
BEHNSEN J, DERIU E, SASSONE-CORSI M, et al. Probiotics: properties, examples, and specific applications[J]. Cold Spring Harb Perspect Med, 2013, 3( 3): a010074. DOI: 10.1101/cshperspect.a010074 .
|
17 |
KIM D, KIM Y, YOON S H. Development of a genome-scale metabolic model and phenome analysis of the probiotic Escherichia coli strain nissle 1917[J]. Int J Mol Sci, 2021, 22( 4): 2122. DOI: 10.3390/ijms22042122 .
|
18 |
CROOK N, FERREIRO A, GASPARRINI A J, et al. Adaptive strategies of the candidate probiotic E. coli nissle in the mammalian gut[J]. Cell Host Microbe, 2019, 25( 4): 499- 512.e8. DOI: 10.1016/j.chom.2019.02.005 .
|
19 |
YU X L, LIN C S, YU J, et al. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy[J]. Microb Biotechnol, 2020, 13( 3): 629- 636. DOI: 10.1111/1751-7915.13523 .
|
20 |
CONWAY T, COHEN P S. Commensal and pathogenic Escherichia coli metabolism in the gut[J]. Microbiol Spectr, 2015, 3( 3): 10.1128/microbiolspec.MBP-0006- 2014. DOI: 10.1128/microbiolspec.MBP-0006-2014 .
|
21 |
CHANG Y Z, SU T Y, QI Q S, et al. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system[J]. Microb Cell Fact, 2016, 15( 1): 195. DOI: 10.1186/s12934-016-0594-4 .
|
22 |
WESTRA E R, SWARTS D C, STAALS R H J, et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity[J]. Annu Rev Genet, 2012, 46: 311- 339. DOI: 10.1146/annurev-genet-110711-155447 .
|
23 |
LI X T, SOU C, JUN S. Protocol for construction of a tunable CRISPR interference (tCRISPRi) strain for Escherichia coli [J]. Bio-protocol, 2017, 7( 19): e2574. DOI: 10.21769/BioProtoc.2574 .
|