Laboratory Animal and Comparative Medicine ›› 2016, Vol. 36 ›› Issue (6): 473-478.DOI: 10.3969/j.issn.1674-5817.2016.06.014
Previous Articles Next Articles
ZHANG Wei, TANG Bin, LI Fu-rong
Received:
2016-08-25
Online:
2016-12-25
Published:
2016-12-25
CLC Number:
ZHANG Wei,TANG Bin,LI Fu-rong. Research Progress on Toxic Milk Mouse[J]. Laboratory Animal and Comparative Medicine, 2016, 36(6): 473-478. DOI: 10.3969/j.issn.1674-5817.2016.06.014.
[1] Mansoor S, Naveed A K, Majeed A.Analysis of clinical and biochemical spectrum of Wilson disease patients[J]. Indian J Pathol Microbiol, 2012, 55(3):365-369. [2] Lee BH, Kim JH, Lee SY, et al.Distinct clinical courses according to presenting phenotypes and their correlations to ATP7B mutations in a large Wilson disease cohort[J]. Liver Int, 2011, 31(6):831-839. [3] Jain A K, Tewari-Singh N, Inturi S, et al.Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin[J]. Toxicol Appl Pharmacol, 2015, 285(1): 71-78. [4] Ala A, Walker AP, Ashkan K, et al.Wilson disease[J]. Lancet, 2007, 369(9559):397-408. [5] Biempica L, Rauch H, Quintana N, et al.Defective localization of the Wilson disease protein (ATP7B) in the mam-mary gland of the toxic milk mouse and the effects of copper supplementation[J]. Biochem J, 2000, 352(2):565-571. [6] Theophilos MB, Cox DW, Mercer JFB.The toxic milk mouse is a murine model of Wilson disease[J]. Hum Mol Genet, 1996, 5(10):1619-1624. [7] Dong Y, Shi SS, Chen S, et al.The discrepancy between the absence of copper deposition and the presence of neuronal damage in the brain of Atp7b-/- mice[J]. Metallomics, 2015, 7(2):283-288. [8] 陈曦, 梁秀龄, 汤其强, 等. 1-6 月龄 TX 小鼠铜代谢和肝损害情况研究[J]. 中山大学学报: 医学科学版, 2005, 26(3): 253-256. [9] Biempica L, Rauch H, Quintana N, et al.Morphologic and chemical studies on a murine mutation (toxic milk mice) resulting in hepatic copper toxicosis[J]. Lab Invest, 1988, 59(4):500-508. [10] 陈曦, 王楚怀, 丰岩清, 等. TX 小鼠铜代谢和肝损害的实验研究[J]. 中华肝脏病杂志, 2009, 17(9):688-690. [11] 石铸, 王莹, 任廷文, 等. TX 小鼠的铜代谢特点和肝脏病理学特征[J].中山大学学报: 医学科学版, 2003(3):211-213. [12] Le A, Shibata NM, French SW, et al.Characterization of timed changes in hepatic copper concentrations, methionine metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson disease[J]. Int J Mol Sci, 2014, 15(5):8004-8023. [13] Roelofsen H, Wolters H, Van Luyn MJA, et al.Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion[J]. Gastroenterology, 2000, 119(3):782-793. [14] La Fontaine S, Ackland ML, Mercer JF.Mammalian copper- transporting P- typeATPases, ATP7A and ATP7B:emerging roles[J]. Int J Biochem Cell Biol, 2010, 42(2):206-209. [15] La Fontaine S, Mercer JF.Trafficking of the copper- ATPases,ATP7Aand ATP7B:role in copper homeostasis[J]. Arch Biochem Biophys, 2007, 63(2):149-167. [16] La Fontaine S, Theophilos MB, Firth SD, et al.Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase[J]. Hum Mol Genet, 2001, 10(4):361-370. [17] Wu F, Wang J, Pu C, et al.Wilson’s disease: a comprehensive review of the molecular mechanisms[J]. Int J Mol Sci, 2015, 16(3):6419-6431. [18] Lockhart PJ, La Fontaine S, Firth SD, et al.Correction of the copper transport defect of Menkes patient fibroblasts by expression of two forms of the sheep Wilson ATPase[J]. Biochim Biophys Acta, 2002, 1588(2):189-194. [19] Barnes N, TsivkovskiiR, Tsivkovskaia N, et al. The copper- transporting ATPases, menkes and wilson disease proteins, have distinctroles in adult and developing cerebellum[J]. J Biol Chem, 2005, 280(10):9640-9645. [20] Le A, Shibata NM, French SW, et al.Characterization of timed changes in hepatic copper concentrations, methionine metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson disease[J]. Int J Mol Sci, 2014, 15(5):8004-8023. [21] Linz R, Lutsenko S.Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins[J]. J Bioenerg Biomembr, 2007, 39(5-6):403-407. [22] Buiakova OI, Xu J, Lutsenko S, et al.Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation[J]. Hum Mol Genet, 1999, 8(9):1665-1671. [23] Kelly EJ, Palmiter RD.A murine model of Menkes disease reveals aphysio logicalfunction of metallothionein[J]. Nat Genet, 1996, 13(2):219-222. [24] Mori M, Nishimura M.A serine-to-proline mutation in the copper-transporting P-type ATPase gene of the macular mouse[J]. Mamm Genome, 1997, 8(6):407-410. [25] Roberts EA, Lau CH, da Silveira TR, et al. Developmental expression of Commd1 in the liver of the Jackson toxic milk mouse[J]. Biochem Biophy Res Commun, 2007, 363(4):921-925. [26] 胡璟, 焦先婷, 刘晓青, 等. Atp7b (tx-J)小鼠脑组织细胞凋亡及 ATP7A表达研究[J]. 上海交通大学学报:医学版,2013, (7):916-919. [27] Mercer JFB.The molecular basis of copper-transport diseases[J]. Trends Mol Med, 2001, 7(2):64-69. [28] Przyby kowski A, Gromadzka G, Wawer A, et al. Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson disease[J]. Neurochemical Res,2013, 38(10):2037-2045. [29] Zhu CC, Zhang Y, Duan X, et al.Toxic effects of HT-2 toxin on mouse oocytes and its possible mechanisms[J]. Arch Toxicol, 2016, 90(6):1495-1505. [30] 陈林, 艾文龙, 程楠, 等. 肝豆汤对TX小鼠肝脏微量元素含量及ATP7B 蛋白表达的影响[J]. 中国临床研究, 2015, 28(2):137-140. [31] Medici V, Shibata NM, Kharbanda KK, et al.Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the TX-j mouse model of Wilson disease[J]. Epigenetics, 2014, 9(2):286-296. [32] Medici V, Kieffer DA, Shibata NM, et al. Wilson Disease: epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model[J]. Epigenetics, 2016,Sep 9:0. [Epub ahead of print]. [33] Medici V, Shibata NM, Kharbanda KK, et al.Wilson disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease[J].Hepatology, 2013, 57(2):555-565. [34] Allen KJ, Cheah DM, Wright PF, et al.Liver cell transplantation leads to repopulation and functional correction in amouse model of Wilson disease[J]. J Gastroen Hepatol, 2004, 19(11):1283-1290. [35] Allen KJ, Cheah DM, Lee XL, et al.The potential of bone marrow stem cells to correct liver dysfunction in a mouse model of Wilson disease[J]. Cell Transplant, 2004, 13(7-8): 765-773. [36] 汤其强, 梁秀龄, 陈曦, 等. pcDDA3.1(+)/ATP7B 对TX 小鼠成纤维细胞铜代谢的影响[J]. 中山大学学报, 2005, 26(4):388-391. [37] 汤其强, 梁秀龄, 陈曦, 等. ATP7B基因治疗对 Wilson 病小鼠模型肝功能的影响[J]. 神经损伤与功能重建, 2008,(3):150-152. [38] Kenney SM, Cox DW.Sequence variation database for the Wilson Disease copper transporter, ATP7B[J]. Hum Mutat, 2007, 28(12):1171-1177. [39] Lutsenko S, LeShane ES, Sinde U. Biochemical basis of regulation of humancopper-transporting ATPases[J]. J Arch Biochem Biophys, 2007, 463(2):134-148. [40] Dmitriev O, Tsivkovskii R, Abildgaard F, et al.Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations[J]. J Proc Natl Acad Sci U S A, 2006, 103(14):5302-5307. [41] Sazinsky MH, Mandal AK, Arguello JM, et al.Structure and characterization of the atpbinding domain from the [42] Banci L, BertiniI, Cantini F, et al. Metal binding domains 3 and 4 of the Wilson disease protein solution structure and interaction with the copper chaperoneHAH1[J]. J Biochem, 2008, 47(28):7423-7429. [43] Banci L, BertiniI, Cantini F, et al. Solution structures of the actuator domain of ATP7A And ATP7B, the Menkes and Wilson disease proteins[J]. J Biochem, 2009, 48(33):7849-7855. [44] Kumar V, Kalita J, Misra U K, et al.A study of dose response and organ susceptibility of copper toxicity in a rat model[J]. J Trace Elem Med Biol , 2015, 29:269-274. [45] Zhang JW, Liu JX, Hou HM, et al.Effects of tetrathiomolybdate and penicillamine on brain hydroxyl radical and free copper levels: A microdialysis study [46] Lutsenko S.Modifying factors and phenotypic diversity in Wilson disease[J]. Ann N Y Acad Sci, 2014, 1315(1):56-63. |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
[5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
[6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
[7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
[8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
[9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
[11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
[12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
[13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
[14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
[15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||