Laboratory Animal and Comparative Medicine ›› 2021, Vol. 41 ›› Issue (2): 174-180.DOI: 10.12300/j.issn.1674-5817.2020.052
RUAN Leiying, SUN Xiaomei
Received:
2020-05-06
Revised:
2020-09-01
Published:
2021-04-30
Contact:
SUN Xiaomei, E-mail: sxm@imbcams.com.cn
CLC Number:
RUAN Leiying,SUN Xiaomei. Classification and Research Progress on Dendritic Cell Subsets in Mice[J]. Laboratory Animal and Comparative Medicine, 2021, 41(2): 174-180. DOI: 10.12300/j.issn.1674-5817.2020.052.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2020.052
[1] WAISMAN A, LUKAS D, CLAUSEN B E, et al.Dendritic cells as gatekeepers of tolerance[J]. Semin Immunopathol, 2017, 39(2): 153-163. DOI.10.1007/s00281-016-0583-z. [2] SEGURA E.Review of mouse and human dendritic cell subsets[J]. Methods Mol Biol, 2016, 1423:3-15. DOI:10.1007/978-1-4939-3606-9_1. [3] SCHRAML BU, REIS E SOUSA C. Defining dendritic cells[J]. Curr Opin Immunol, 2015, 32: 13-20. DOI.0.1016/j.coi.2014.11.001. [4] RODRIGUES P F, ALBERTI-SERVERA L, EREMIN A, et al.Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells[J]. Nat Immunol, 2018, 19(7):711-722. DOI:10.1038/s41590-018-0136-9. [5] BRISE OCG, HALDAR M, KRETZER N M, et al.Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells[J]. Cell Rep, 2016, 15(11):2462-2474. DOI:10.1016/j.celrep.2016.05.025. [6] SICHIEN D, SCOTT C L, MARTENS L, et al.IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively[J]. Immunity, 2016, 45(3):626-640. DOI:10.1016/j.immuni.2016.08.013. [7] LIN Q, CHAUVISTRE H, COSTA I G, et al.Epigenetic program and transcription factor circuitry of dendritic cell development[J]. Nucleic Acids Res, 2015, 43(20): 9680-9693. DOI.10.1093/nar/gkv1056. [8] ANDERSON D A, 3RD, MURPHY K M, BRISENO C G. Development, diversity, and function of dendritic cells in mouse and human[J]. Cold Spring Harb Perspect Biol, 2018, 10(11): 1-19. DOI.10.1101/cshperspect.a028613. [9] HANIFFA M, COLLIN M, GINHOUX F.Ontogeny and functional specialization of dendritic cells in human and mouse[J]. Adv Immunol, 2013, 120:1-49. DOI:10.1016/b978-0-12-417028-5.00001-6. [10] VU MANH TP, BERTHO N, HOSMALIN A, et al.Investigating evolutionary conservation of dendritic cell subset identity and functions[J]. Front Immunol, 2015, 6: 2601-17. DOI.10.3389/fimmu.2015.00260. [11] SCHLITZER A, ZHANG W, SONG M, et al.Recent advances in understanding dendritic cell development, classification, and phenotype[J]. F1000Res, 2018, 7:1-9. DOI.10.12688/f1000research.14793.1. [12] MILLER J C, BROWN B D, SHAY T, et al.Deciphering the transcriptional network of the dendritic cell lineage[J]. Nat Immunol, 2012, 13(9):888-899. DOI:10.1038/ni.2370. [13] SHAY T, JOJIC V, ZUK O, et al.Conservation and divergence in the transcriptional programs of the human and mouse immune systems[J]. PNAS, 2013, 110(8):2946-2951. DOI:10.1073/pnas.1222738110. [14] MURPHY K M.Transcriptional control of dendritic cell development[J]. Adv Immunol, 2013, 120:239-267. DOI:10.1016/b978-0-12-417028-5.00009-0. [15] AMON L, LEHMANN CHK, BARANSKA A, et al.Transcriptional control of dendritic cell development and functions[J]. Int Rev Cell Mol Biol, 2019, 349:55-151. DOI.10.1016/bs.ircmb.2019.10.001 [16] NUTT S L, CHOPIN M.Transcriptional networks driving dendritic cell differentiation and function[J]. Immunity, 2020, 52(6):942-956. DOI:10.1016/j.immuni.2020.05.005. [17] VILLAR J, SEGURA E.Recent advances towards deciphering human dendritic cell development[J]. Mol Immunol, 2020, 122:109-115. DOI:10.1016/j.molimm.2020.04.004. [18] DURAI V, MURPHY K M.Functions of murine dendritic cells[J]. Immunity, 2016, 45(4):719-736. DOI:10.1016/j.immuni.2016.10.010. [19] GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al.Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8):571-578. DOI:10.1038/nri3712. [20] ACHIM K, ARENDT D.Structural evolution of cell types by step-wise assembly of cellular modules[J]. Curr Opin Genet Dev, 2014, 27: 102-108. DOI.10.1016/j.gde.2014.05.001. [21] ARENDT D.The evolution of cell types in animals: emerging principles from molecular studies[J]. Nat Rev Genet, 2008, 9(11):868-882. DOI:10.1038/nrg2416. [22] VU MANH T P, ELHMOUZI-YOUNES J, URIEN C, et al. Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics[J]. Front Immunol, 2015, 6:299. DOI:10.3389/fimmu.2015.00299. [23] GUILLIAMS M, HENRI S, TAMOUTOUNOUR S, et al.From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets[J]. Eur J Immunol, 2010, 40(8): 2089-2094. DOI.10.1002/eji.201040498. [24] BALAN S, SAXENA M, BHARDWAJ N.Dendritic cell subsets and locations[J]. Int Rev Cell Mol Biol, 2019, 348:1-68. DOI:10.1016/bs.ircmb.2019.07.004. [25] NAIK SH.Demystifying the development of dendritic cell subtypes, a little[J]. Immunol Cell Biol, 2008, 86(5): 439-452. DOI.10.1038/icb.2008.28 [26] GILLIET M, CAO W, LIU Y J.Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases[J]. Nat Rev Immunol, 2008, 8(8):594-606. DOI:10.1038/nri2358. [27] LEYLEK R, IDOYAGA J.The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity[J]. Int Rev Cell Mol Biol, 2019, 349:177-211. DOI:10.1016/bs.ircmb.2019.10.002. [28] WATCHMAKER P B, LAHL K, LEE M, et al.Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice[J]. Nat Immunol, 2014, 15(1):98-108. DOI:10.1038/ni.2768. [29] MILDNER A, JUNG S.Development and function of dendritic cell subsets[J]. Immunity, 2014, 40(5):642-656. DOI.10.1016 / j.immuni.2014.04.016. [30] Crozat K, Guiton R, Guilliams M, et al.Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets[J]. Immunol Rev, 2010, 234(1): 177-198. DOI.10.1111/j.0105-2896.2009.00868.x. [31] ROMANI N, CLAUSEN B E, STOITZNER P.Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin[J]. Immunol Rev, 2010, 234(1):120-141. DOI:10.1111/j.0105-2896.2009.00886.x. [32] MERAD M, GINHOUX F, COLLIN M.Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells[J]. Nat Rev Immunol, 2008, 8(12): 935-947. DOI.10.1038/nri2455. [33] DOEBEL T, VOISIN B, NAGAO K.Langerhans cells - the macrophage in dendritic cell clothing[J]. Trends Immunol, 2017, 38(11): 817-828. DOI.10.1016/j.it.2017.06.008. [34] KAPLAN D H.Ontogeny and function of murine epidermal Langerhans cells[J]. Nat Immunol, 2017, 18(10):1068-1075. DOI:10.1038/ni.3815. [35] REIZIS B, BUNIN A, GHOSH H S, et al.Plasmacytoid dendritic cells: recent progress and open questions[J]. Annu Rev Immunol, 2011, 29:163-183. DOI:10.1146/annurev-immunol-031210-101345. [36] KUROTAKI D, KAWASE W, SASAKI H, et al.Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice[J]. Blood, 2019, 133(17):1803-1813. DOI:10.1182/blood-2018-06-857789. [37] CISSE B, CATON M L, LEHNER M, et al.Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development[J]. Cell, 2008, 135(1):37-48. DOI:10.1016/j.cell.2008.09.016. [38] ITO T, KANZLER H, DURAMAD O, et al.Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells[J]. Blood, 2006, 107(6):2423-2431. DOI:10.1182/blood-2005-07-2709. [39] ROBBINS SH, WALZER T, DEMBELE D, et al.Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling[J]. Genome Biol, 2008, 9(1): R171-7. DOI.10.1186/gb-2008-9-1-r17. [40] STEINMAN R M.Decisions about dendritic cells: past, present, and future[J]. Annu Rev Immunol, 2012, 30:1-22. DOI.10.1146/annurev-immunol-100311-102839. [41] SCHLITZER A, MCGOVERN N, TEO P, et al.IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses[J]. Immunity, 2013, 38(5): 970-983. DOI.10.1016 / j.immuni.2013.04.011. [42] POULIN L F, REYAL Y, URONEN-HANSSON H, et al.DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues[J]. Blood, 2012, 119(25):6052-6062. DOI:10.1182/blood-2012-01-406967. [43] WEIH F, CARRASCO D, DURHAM S K, et al.Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family[J]. Cell, 1995, 80(2):331-340. DOI:10.1016/0092-8674(95)90416-6. [44] COLLIN M, MCGOVERN N, HANIFFA M.Human dendritic cell subsets[J]. Immunology, 2013, 140(1): 22-30. DOI.10.1111/imm.12888. [45] SEGURA E, AMIGORENA S.Inflammatory dendritic cells in mice and humans[J]. Trends Immunol, 2013, 34(9):440-445. DOI:10.1016/j.it.2013.06.001. [46] LEÓN B, LÓPEZ-BRAVO M, ARDAV?N C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania[J]. Immunity, 2007, 26(4):519-531. DOI:10.1016/j.immuni.2007.01.017. [47] GUTTMAN-YASSKY E, LOWES M A, FUENTES-DUCULAN J, et al.Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis[J]. J Allergy Clin Immunol, 2007, 119(5):1210-1217. DOI:10.1016/j.jaci.2007.03.006. [48] OTSUKA M, EGAWA G, KABASHIMA K.Uncovering the mysteries of Langerhans cells, inflammatory dendritic epidermal cells, and monocyte-derived Langerhans cell-like cells in the epidermis[J]. Front Immunol, 2018, 9:1768. DOI:10.3389/fimmu.2018.01768. [49] LIU K, VICTORA G D, SCHWICKERT T A, et al.In vivo analysis of dendritic cell development and homeostasis[J]. Science, 2009, 324(5925):392-397. DOI:10.1126/science.1170540. |
[1] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
[2] | KONG Zhihao, WEI Xiaofeng, YU Lingzhi, FENG Liping, ZHU Qi, SHI Guojun, WANG Chen. Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 368-375. |
[3] | XU Qiuyu, YAN Guofeng, FU Li, FAN Wenhua, ZHOU Jing, ZHU Lian, QIU Shuwen, ZHANG Jie, WU Ling. A Mouse Model of Polycystic Ovary Syndrome Established Through Subcutaneous Administration of Letrozole Sustained-Release Pellets and Hepatic Transcriptome Analysis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 119-129. |
[4] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
[5] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
[6] | ZHANG Nan, LI Huaiyin, LIAN Xiaodi, WEI Juanpeng, GAO Ming. Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 73-78. |
[7] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[8] | TAN He, YANG Xiaohui, ZHANG Daxiu, WANG Guicheng. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. |
[9] | MENG Yu, LIANG Dongli, ZHENG Linlin, ZHOU Yuanyuan, WANG Zhaoxia. Optimization and Evaluation of Conditions for Orthotopic Nude Mouse Models of Human Liver Tumor Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 511-522. |
[10] | Jing QIN, Yong ZHAO, Caiqin ZHANG, Bing BAI, Changhong SHI. Construction and Evaluation of Theranostic Near-infrared Fluorescent Probe for Targeting Inflammatory Brain Edema [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 243-250. |
[11] | Yisu ZHANG, Xinru LIU, Ruojie WU, Rui LIU, Hong OUYANG, Xiaohong LI. Establishment and Evaluation of Mouse Model of Pregnancy Pain-depression Comorbidity Induced by Chronic Unpredictable Stress, Complete Freund's Adjuvant and Formalin [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 259-269. |
[12] | Dong WU, Rui SHI, Peishan LUO, Ling'en LI, Xijing SHENG, Mengyang WANG, Lu NI, Sujuan WANG, Huixin YANG, Jing ZHAO. Effects of Different Pellet Feed Hardness on Growth and Reproduction, Feed Utilization Rate, and Environmental Dust in Laboratory Mice [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 313-320. |
[13] | Yun LIU, Tingting FENG, Wei TONG, Zhi GUO, Xia LI, Qi KONG, Zhiguang XIANG. Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 251-258. |
[14] | Jinhua HU, Jingjie HAN, Min JIN, Bin HU, Yuefen LOU. Effects of Puerarin on Bone Density in Rats and Mice: A Meta-analysis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 149-161. |
[15] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||