Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (1): 3-12.DOI: 10.12300/j.issn.1674-5817.2024.095
• Development and Utilization of Laboratory Animal Resources • Previous Articles Next Articles
HE Yuxin1()(
), BAI Zhenzhong1,2, XUE Hua1, GUO Zixu1, CAO Xuefeng1,2(
)(
)
Received:
2024-07-10
Revised:
2024-12-11
Online:
2025-02-25
Published:
2025-03-12
Contact:
CAO Xuefeng
CLC Number:
HE Yuxin,BAI Zhenzhong,XUE Hua,et al. Analysis of Kidney Differential Metabolites and Hypoxia Adaptation Mechanism of Plateau Pikas Based on UHPLC-QE-MS[J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 3-12. DOI: 10.12300/j.issn.1674-5817.2024.095.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.095
项目 Item | MD组 MD group (n=10) | MY组 MY group (n=10) | t值 t value | P 值 P value |
---|---|---|---|---|
RBC Ccell/(1012·L-1) | 6.93±0.85 | 6.75±1.65 | 0.355 | 0.726 |
HGB ρ/(g·L-1) | 116.36±7.39 | 141.40±21.45 | -4.074 | 0.001 |
HCT φ/(%) | 36.45±2.62 | 42.58±7.09 | -2.985 | 0.007 |
GLU c/(mmol·L-1) | 6.07±3.66 | 5.84±2.51 | 0.177 | 0.861 |
BUN c/(mmol·L-1) | 7.48±4.01 | 5.89±3.00 | 1.054 | 0.305 |
Cr c/(µmol·L-1) | 21.55±5.97 | 22.36±8.65 | -0.258 | 0.799 |
UA c/(µmol·L-1) | 45.09±21.90 | 24.27±15.84 | 2.555 | 0.019 |
CO2CP c/(mmol·L-1) | 18.72±5.85 | 26.01±5.83 | -2.928 | 0.008 |
HCY c/(µmol·L-1) | 25.03±10.31 | 18.35±12.09 | 1.393 | 0.179 |
Table 1 Comparison of general physiological and biochemical indicators of plateau pikas at different altitudes
项目 Item | MD组 MD group (n=10) | MY组 MY group (n=10) | t值 t value | P 值 P value |
---|---|---|---|---|
RBC Ccell/(1012·L-1) | 6.93±0.85 | 6.75±1.65 | 0.355 | 0.726 |
HGB ρ/(g·L-1) | 116.36±7.39 | 141.40±21.45 | -4.074 | 0.001 |
HCT φ/(%) | 36.45±2.62 | 42.58±7.09 | -2.985 | 0.007 |
GLU c/(mmol·L-1) | 6.07±3.66 | 5.84±2.51 | 0.177 | 0.861 |
BUN c/(mmol·L-1) | 7.48±4.01 | 5.89±3.00 | 1.054 | 0.305 |
Cr c/(µmol·L-1) | 21.55±5.97 | 22.36±8.65 | -0.258 | 0.799 |
UA c/(µmol·L-1) | 45.09±21.90 | 24.27±15.84 | 2.555 | 0.019 |
CO2CP c/(mmol·L-1) | 18.72±5.85 | 26.01±5.83 | -2.928 | 0.008 |
HCY c/(µmol·L-1) | 25.03±10.31 | 18.35±12.09 | 1.393 | 0.179 |
Figure 1 Ultra-high-performance liquid chromatography coupled with quadrupole electrostatic field orbital trap-mass spectrometry (UHPLC-QE-MS) analysis of kidney metabolomics in plateau pikas at different altitudesNote:A is the scatter plot of principal component analysis (PCA) model between MD group and MY group; B is the scatter plot obtained by PCA for all samples (including QC samples). In the figure A and B, the horizontal axis (PC[1]) and the vertical axis (PC[2]) represent the scores of the first and second principal components, respectively, and the color and shape of the scatter points indicate the experimental grouping of the samples. C is the scatter plot of the orthogonal partial least squares discriminant analysis (OPLS-DA) model between MD group and MY group (The horizontal axis represents the scores of the predictive principal components, reflecting the separation degree between groups. The vertical axis represents the scores of the orthogonal principal components, reflecting the distribution of differences within groups); D is the permutation test of the OPLS-DA model of MD group for MY group (X-axis (t[1]P) and Y-axis (t[1]O) represent the principal components of the first and second regions, respectively. R2Y=0.93, Q2=0.655).
峰值 Peak | 代谢物 Metabolites | MD组vs MY组 MD group vs MY group | ||||
---|---|---|---|---|---|---|
中文名 Chinese name | 英文名 English name | RT/s | VIP | P value | FC | |
4217 | 蟾蜍二烯羟酸内酯 | Bufadienolide | 302.521 | 2.841 | 0.046 1 | 216.417 |
3586 | 薯蓣皂苷配基 | Diosgenin | 375.853 | 2.790 | 0.000 0 | 23.644 |
2596 | 盐酸小檗碱 | Berberine chloride | 448.647 | 1.684 | 0.010 1 | 2.418 |
5668 | 顺丁烯二酰亚胺 | Maleimide | 157.759 | 2.051 | 0.003 3 | 2.275 |
6118 | 腺嘌呤 | Adenine | 128.009 | 1.992 | 0.002 6 | 1.355 |
4040 | 7,8-脱氢虾青素 | 7,8-Dehydroastaxanthin | 304.975 | 2.124 | 0.007 8 | 13.719 |
4168 | 贝那普利酯 | Benazeprilat | 279.705 | 2.212 | 0.000 8 | 10.772 |
4196 | 胆固醇-3,7,12,25-呋喃-3-葡萄糖醛酸 | Cholestane-3,7,12,25-tetrol-3-glucuronide | 273.513 | 2.149 | 0.001 2 | 5.633 |
4221 | 7-乙氧基香豆素 | 7-Ethoxycoumarin | 261.173 | 1.795 | 0.017 9 | 2.839 |
3212 | 1-硬脂酰甘油磷酸甘油 | 1-Stearoylglycerophosphoglycerol | 412.530 | 1.586 | 0.025 1 | 2.103 |
5578 | 2-甲氧基对乙酰氨基酚硫酸盐 | 2-Methoxyacetaminophen sulfate | 36.282 | 2.150 | 0.000 5 | 0.453 |
5294 | 黄嘌呤 | Xanthosine | 57.261 | 1.863 | 0.007 7 | 0.448 |
5476 | 四氢生物蝶呤 | Tetrahydrobiopterin | 42.319 | 1.632 | 0.011 0 | 0.425 |
2896 | 小穗苎麻素 | Cryptopleurine | 440.968 | 2.258 | 0.000 3 | 0.292 |
3198 | 坎二酸 | Canbidiolic acid | 413.844 | 2.004 | 0.012 7 | 0.284 |
5570 | GDP-3,6-二脱氧-D-半乳糖 | GDP-3,6-dideoxy-D-galactose | 36.317 | 1.735 | 0.001 6 | 0.197 |
5501 | 棉酚 | Gossypol | 41.544 | 1.725 | 0.019 3 | 0.160 |
4549 | 4-香豆素基莽草酸酯 | 4-Coumaroylshikimate | 179.435 | 2.266 | 0.009 7 | 0.103 |
4596 | 紫丁香苷 | Syringin | 169.451 | 2.374 | 0.010 3 | 0.050 |
5805 | 5-O-甲基-间氨基-肌醇 | 5-O-Methyl-myo-inositol | 33.358 | 2.543 | 0.000 5 | 0.026 |
5001 | 癸二酸 | Sebacic acid | 135.122 | 2.295 | 0.046 3 | 0.077 |
4671 | 萨马素A | Samaderin A | 163.209 | 1.535 | 0.037 8 | 0.217 |
4717 | 3-脱氢酶 | 3-Dehydrogenase | 157.505 | 2.158 | 0.000 9 | 0.170 |
4514 | 硫烯草丹 | Sulfallate | 185.215 | 1.844 | 0.049 0 | 0.190 |
5688 | 双甲苯苄醇 | Bitolterol | 35.519 | 1.568 | 0.001 1 | 0.271 |
5523 | 烟碱 | Nicotiamine | 169.858 | 2.201 | 0.000 1 | 0.454 |
7265 | 吡达隆 | Pyridarone | 29.322 | 1.490 | 0.019 5 | 0.401 |
3058 | 高肌肽 | Homocarnosine | 412.238 | 1.966 | 0.006 3 | 0.390 |
3410 | 阿非迪霉素 | Aphidicolin | 388.298 | 2.133 | 0.005 0 | 0.205 |
3101 | 松香酸盐 | Abietate | 408.903 | 2.373 | 0.033 4 | 0.088 |
4573 | 秦皮苷 | Fraxin | 174.802 | 1.098 | 0.034 3 | 0.085 |
3554 | 高多环内酯 | Homodolicholide | 380.038 | 1.667 | 0.004 0 | 0.234 |
3984 | 法尼基半胱氨酸 | Farnesylcysteine | 328.343 | 2.148 | 0.015 9 | 0.224 |
59 | 泛酸 | Pantothenic acid | 157.754 | 2.460 | 0.000 1 | 0.480 |
6640 | 1-甲基腺苷 | 1-Methyladenosine | 44.286 | 2.135 | 0.003 3 | 0.482 |
5674 | L-二氢脱壳素 | L-Dihydroanticapsin | 157.754 | 2.510 | 0.000 1 | 0.463 |
3695 | 十八碳四烯酸 | Stearidonic acid | 359.953 | 2.698 | 0.003 7 | 0.103 |
4631 | 6-脱氧巴西红厚壳素 | 6-Deoxyjacareubin | 237.103 | 2.310 | 0.011 0 | 0.096 |
5940 | 异戊烯焦磷酸 | Isopentenyl diphosphate | 142.170 | 2.771 | 0.038 3 | 0.004 |
6407 | 环氧化物青蒿琥酯 | Artomunoxanthentrione epoxide | 27.729 | 2.401 | 0.000 0 | 0.249 |
5768 | 苄基青霉酸 | Benzylpenicilloic acid | 151.870 | 2.655 | 0.025 4 | 0.034 |
302 | 异亮氨酸 | Isoleucine | 71.954 | 1.669 | 0.045 9 | 0.698 |
6496 | L-缬氨酸 | L-Valine | 55.803 | 1.684 | 0.018 2 | 0.637 |
4165 | 鼠尾草酚 | Carnosol | 279.762 | 2.070 | 0.003 8 | 31.391 |
41 | 花生四烯酸 | Arachidonic acid | 466.526 | 1.614 | 0.010 5 | 0.695 |
5711 | 组胺 | Histamine | 35.217 | 1.740 | 0.042 9 | 0.537 |
Table 2 Differential molecules of kidney metabolites in plateau pikas at different altitudes
峰值 Peak | 代谢物 Metabolites | MD组vs MY组 MD group vs MY group | ||||
---|---|---|---|---|---|---|
中文名 Chinese name | 英文名 English name | RT/s | VIP | P value | FC | |
4217 | 蟾蜍二烯羟酸内酯 | Bufadienolide | 302.521 | 2.841 | 0.046 1 | 216.417 |
3586 | 薯蓣皂苷配基 | Diosgenin | 375.853 | 2.790 | 0.000 0 | 23.644 |
2596 | 盐酸小檗碱 | Berberine chloride | 448.647 | 1.684 | 0.010 1 | 2.418 |
5668 | 顺丁烯二酰亚胺 | Maleimide | 157.759 | 2.051 | 0.003 3 | 2.275 |
6118 | 腺嘌呤 | Adenine | 128.009 | 1.992 | 0.002 6 | 1.355 |
4040 | 7,8-脱氢虾青素 | 7,8-Dehydroastaxanthin | 304.975 | 2.124 | 0.007 8 | 13.719 |
4168 | 贝那普利酯 | Benazeprilat | 279.705 | 2.212 | 0.000 8 | 10.772 |
4196 | 胆固醇-3,7,12,25-呋喃-3-葡萄糖醛酸 | Cholestane-3,7,12,25-tetrol-3-glucuronide | 273.513 | 2.149 | 0.001 2 | 5.633 |
4221 | 7-乙氧基香豆素 | 7-Ethoxycoumarin | 261.173 | 1.795 | 0.017 9 | 2.839 |
3212 | 1-硬脂酰甘油磷酸甘油 | 1-Stearoylglycerophosphoglycerol | 412.530 | 1.586 | 0.025 1 | 2.103 |
5578 | 2-甲氧基对乙酰氨基酚硫酸盐 | 2-Methoxyacetaminophen sulfate | 36.282 | 2.150 | 0.000 5 | 0.453 |
5294 | 黄嘌呤 | Xanthosine | 57.261 | 1.863 | 0.007 7 | 0.448 |
5476 | 四氢生物蝶呤 | Tetrahydrobiopterin | 42.319 | 1.632 | 0.011 0 | 0.425 |
2896 | 小穗苎麻素 | Cryptopleurine | 440.968 | 2.258 | 0.000 3 | 0.292 |
3198 | 坎二酸 | Canbidiolic acid | 413.844 | 2.004 | 0.012 7 | 0.284 |
5570 | GDP-3,6-二脱氧-D-半乳糖 | GDP-3,6-dideoxy-D-galactose | 36.317 | 1.735 | 0.001 6 | 0.197 |
5501 | 棉酚 | Gossypol | 41.544 | 1.725 | 0.019 3 | 0.160 |
4549 | 4-香豆素基莽草酸酯 | 4-Coumaroylshikimate | 179.435 | 2.266 | 0.009 7 | 0.103 |
4596 | 紫丁香苷 | Syringin | 169.451 | 2.374 | 0.010 3 | 0.050 |
5805 | 5-O-甲基-间氨基-肌醇 | 5-O-Methyl-myo-inositol | 33.358 | 2.543 | 0.000 5 | 0.026 |
5001 | 癸二酸 | Sebacic acid | 135.122 | 2.295 | 0.046 3 | 0.077 |
4671 | 萨马素A | Samaderin A | 163.209 | 1.535 | 0.037 8 | 0.217 |
4717 | 3-脱氢酶 | 3-Dehydrogenase | 157.505 | 2.158 | 0.000 9 | 0.170 |
4514 | 硫烯草丹 | Sulfallate | 185.215 | 1.844 | 0.049 0 | 0.190 |
5688 | 双甲苯苄醇 | Bitolterol | 35.519 | 1.568 | 0.001 1 | 0.271 |
5523 | 烟碱 | Nicotiamine | 169.858 | 2.201 | 0.000 1 | 0.454 |
7265 | 吡达隆 | Pyridarone | 29.322 | 1.490 | 0.019 5 | 0.401 |
3058 | 高肌肽 | Homocarnosine | 412.238 | 1.966 | 0.006 3 | 0.390 |
3410 | 阿非迪霉素 | Aphidicolin | 388.298 | 2.133 | 0.005 0 | 0.205 |
3101 | 松香酸盐 | Abietate | 408.903 | 2.373 | 0.033 4 | 0.088 |
4573 | 秦皮苷 | Fraxin | 174.802 | 1.098 | 0.034 3 | 0.085 |
3554 | 高多环内酯 | Homodolicholide | 380.038 | 1.667 | 0.004 0 | 0.234 |
3984 | 法尼基半胱氨酸 | Farnesylcysteine | 328.343 | 2.148 | 0.015 9 | 0.224 |
59 | 泛酸 | Pantothenic acid | 157.754 | 2.460 | 0.000 1 | 0.480 |
6640 | 1-甲基腺苷 | 1-Methyladenosine | 44.286 | 2.135 | 0.003 3 | 0.482 |
5674 | L-二氢脱壳素 | L-Dihydroanticapsin | 157.754 | 2.510 | 0.000 1 | 0.463 |
3695 | 十八碳四烯酸 | Stearidonic acid | 359.953 | 2.698 | 0.003 7 | 0.103 |
4631 | 6-脱氧巴西红厚壳素 | 6-Deoxyjacareubin | 237.103 | 2.310 | 0.011 0 | 0.096 |
5940 | 异戊烯焦磷酸 | Isopentenyl diphosphate | 142.170 | 2.771 | 0.038 3 | 0.004 |
6407 | 环氧化物青蒿琥酯 | Artomunoxanthentrione epoxide | 27.729 | 2.401 | 0.000 0 | 0.249 |
5768 | 苄基青霉酸 | Benzylpenicilloic acid | 151.870 | 2.655 | 0.025 4 | 0.034 |
302 | 异亮氨酸 | Isoleucine | 71.954 | 1.669 | 0.045 9 | 0.698 |
6496 | L-缬氨酸 | L-Valine | 55.803 | 1.684 | 0.018 2 | 0.637 |
4165 | 鼠尾草酚 | Carnosol | 279.762 | 2.070 | 0.003 8 | 31.391 |
41 | 花生四烯酸 | Arachidonic acid | 466.526 | 1.614 | 0.010 5 | 0.695 |
5711 | 组胺 | Histamine | 35.217 | 1.740 | 0.042 9 | 0.537 |
Figure 2 Correlation of kidney differential metabolites and related pathways in plateau pikas at different altitudesNote:A is correlation analysis heat map (Corr, correlation coefficients of variables); B is the volcano plot (VIP, variable importance in projection; FC, fold change, the quantitative ratio of two groups of experimental substances; P value, probability of significance of different metabolites between the two groups); C is the pathway recognition bubble chart; D is the path identification rectangular graph (Gm, glycerophospholipid metabolism; Pm, purine metabolism).
1 | 高聪慧, 李吉梅, 徐波, 等. 高原鼢鼠和高原鼠兔血液参数和血红蛋白亚型对不同海拔生境的响应[J]. 生理学报, 2023, 75(1):69-81. DOI: 10.13294/j.aps.2022.0105 . |
GAO C H, LI J M, XU B, et al. Responses of blood parameters and hemoglobin subtypes in plateau zokors and plateau pikas to different altitude habitats[J]. Acta Physiol Sin, 2023, 75(1):69-81. DOI: 10.13294/j.aps.2022.0105 . | |
2 | 敖强国, 宋世涛, 邹慧. 高原低压低氧环境对平原健康男青年血像和肾功能影响[J]. 中华保健医学杂志, 2011, 13(6):456-458. DOI: 10.3969/j.issn.1674-3245.2011.06.009 . |
AO Q G, SONG S T, ZOU H. Impact of hypoxia environment at plateau on renal function among healthy male youth[J]. Chin J Health Care Med, 2011, 13(6):456-458. DOI: 10.3969/j.issn.1674-3245.2011.06.009 . | |
3 | 刘忠浩, 郭松长, 白祥慧, 等. 低氧暴露下高原鼠兔血液中三种内源性气体分子含量的变化[J]. 基因组学与应用生物学, 2021, 40(4):1539-1543. DOI: 10.13417/j.gab.040.001539 . |
LIU Z H, GUO S C, BAI X H, et al. Changes of three endogenous gas molecules in the blood of plateau pika exposed to hypoxia[J]. Genom Appl Biol, 2021, 40(4):1539-1543. DOI: 10.13417/j.gab.040.001539 . | |
4 | 张湑泽, 付林, 邹小艳, 等. 低氧暴露下高原鼠兔肺组织间隙连接蛋白40表达分析[J]. 兽类学报, 2022, 42(5):572-578. DOI: 10.16829/j.slxb.150686 . |
ZHANG X Z, FU L, ZOU X Y, et al. Expression analysis of gap junction protein 40 in lung of plateau pika exposed to hypoxia[J]. Acta Theriol Sin, 2022, 42(5):572-578. DOI: 10.16829/j.slxb.150686 . | |
5 | CHANG Y, ZHANG W, CHEN K, et al. Metabonomics window into plateau hypoxia[J]. J Int Med Res, 2019, 47(11):5441-5452. DOI:10.1177/0300060519879323 . |
6 | 杨卫波, 李素芝, 高钰琪, 等. 急性肾功能损伤在急性高原病发病过程中的差异研究[J]. 第三军医大学学报, 2018, 40(12):1109-1114. DOI: 10.16016/j.1000-5404.201710226 . |
YANG W B, LI S Z, GAO Y Q, et al. Phenotypes of acute renal function injuries in different acute high-altitude diseases[J]. J Third Mil Med Univ, 2018, 40(12):1109-1114. DOI: 10.16016/j.1000-5404.201710226 . | |
7 | BOREA P A, GESSI S, MERIGHI S, et al. Pharmacology of adenosine receptors: the state of the art[J].Physiol Rev, 2018, 98(3): 1591-1625. DOI: 10.1152/physrev.00049.2017 . |
8 | LI X Y, BERG N K, MILLS T, et al. Adenosine at the interphase of hypoxia and inflammation in lung injury[J]. Front Immunol, 2021, 11:604944. DOI:10.3389/fimmu.2020.604944 . |
9 | DIAS L, POCHMANN D, LEMOS C, et al. Increased synaptic ATP release and CD73-mediated formation of extracellular adenosine in the control of behavioral and electrophysiological modifications caused by chronic stress[J]. ACS Chem Neurosci, 2023, 14(7):1299-1309. DOI:10.1021/acschemneuro.2c00810 . |
10 | SEMWAL P, PAINULI S, ABU-IZNEID T, et al. Diosgenin: an updated pharmacological review and therapeutic perspectives[J]. Oxid Med Cell Longev, 2022, 2022:1035441. DOI:10.1155/2022/1035441 . |
11 | YANG L F, REN S N, XU F, et al. Recent advances in the pharmacological activities of dioscin[J]. Biomed Res Int, 2019, 2019:5763602. DOI:10.1155/2019/5763602 . |
12 | OCH A, PODGÓRSKI R, NOWAK R. Biological activity of berberine-a summary update[J]. Toxins(Basel), 2020, 12(11):713. DOI:10.3390/toxins12110713 . |
13 | SHELL B, FAULK K, THOMAS CUNNINGHAM J. Neural control of blood pressure in chronic intermittent hypoxia[J]. Curr Hypertens Rep, 2016, 18(3):19. DOI:10.1007/s11906-016-0627-8 . |
14 | SATOH T, MCKERCHER S R, LIPTON S A. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs[J]. Free Radic Biol Med, 2013, 65:645-657. DOI:10.1016/j.freeradbiomed. 2013. 07.022 . |
15 | HASSANEIN E H M, SAYED A M, HUSSEIN O E, et al. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020:1675957. DOI:10.1155/2020/1675957 . |
16 | SUDARIKOVA A V, FOMIN M V, YANKELEVICH I A, et al. The implications of histamine metabolism and signaling in renal function[J]. Physiol Rep, 2021, 9(8): e14845. DOI:10.14814/phy2.14845 . |
17 | GRANGE C, GURRIERI M, VERTA R, et al. Histamine in the kidneys: what is its role in renal pathophysiology?[J]. Br J Pharmacol, 2020, 177(3):503-515. DOI:10.1111/bph.14619 . |
18 | 喻昌燕, 孟令杰, 姜念, 等. 蟾皮化学成分和药理活性的研究进展[J]. 中草药, 2021, 52(4): 1206-1220. DOI: 10.7501/j.issn.0253-2670.2021.04.035 . |
YU C Y, MENG L J, JIANG N, et al. Research progress on chemical constituents and pharmacological activities of Bofonis Corium[J]. Chin Tradit Herb Drugs, 2021, 52(4):1206-1220. DOI: 10.7501/j.issn.0253-2670.2021.04.035 . | |
19 | UDDIN M N, ALLEN S R, JONES R O, et al. Pathogenesis of pre-eclampsia: marinobufagenin and angiogenic imbalance as biomarkers of the syndrome[J]. Transl Res, 2012, 160(2):99-113. DOI:10.1016/j.trsl.2012.01.005 . |
20 | CARULLO N, FABIANO G, D'AGOSTINO M, et al. New insights on the role of marinobufagenin from bench to bedside in cardiovascular and kidney diseases[J]. Int J Mol Sci, 2023, 24(13):11186. DOI:10.3390/ijms241311186 . |
[1] | ZHANG Naiqun, YUAN Piaopiao, CAO Linrong, YING Na, YANG Taotao. Application of PNR Detection in the Diagnosis and Drug-efficacy Evaluation of Diabetic Kidney Disease in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 543-549. |
[2] | Jinxing LIN, Xindong WANG, Xuebing BAI, Liping FENG, Shuwu XIE, Qiusheng CHEN. Fine Structure of the Trunk Kidney and Distribution of Its Secreted Exosomes in the Adult Zebrafish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 531-540. |
[3] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[4] | Lingqun LU, Honggang GUO, Qiaojuan SHI, Fangwei DAI, Xiaofeng CHU. Histological Characteristics of the Kidney in Mongolian Gerbils of Different Ages [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 61-66. |
[5] | Xiaoli ZHOU, Qian ZHANG, Zhiyong QIAN. Research Progress on Mechanism and Intervention of Renal Function Injury in Hyperlipidemia Animal Model [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 213-219. |
[6] | ZHANG Jingyuan, ZHANG Qianqian, ZHAO Yining, YAGN Rong, ZHANG Chengcai, HE Chenjiong, YUAN Zheng, CUI Shufang. Effects of 60Co γ-ray Radiation on Kidney, Lung and Skeletal Muscle Tissues of Naked Mole Rats [J]. Laboratory Animal and Comparative Medicine, 2020, 40(6): 513-518. |
[7] | SHI Xiang-hua, YANG Wen-bin, XUE Run-miao, ZHAO Jing-yu, XU yan, ZHANG Cai-feng, CHAI Qiu-yan. Effect of Vitamin D3 on Kidney of Rat at Toxic Dose [J]. Laboratory Animal and Comparative Medicine, 2019, 39(2): 136-139. |
[8] | FU Ting-ting, LIU Yan. Pilot Application of Isolated Perfused Chronic Kidney Transgenic Rat Kidney Model for Discovery and Evaluation of Chronic Kidney Disease Drug [J]. Laboratory Animal and Comparative Medicine, 2017, 37(5): 357-362. |
[9] | WANG Wen-guang, KUANG De-xuan, YIN Bo-wen, LU Cai-xia, HAN Yuan-yuan, LI Na, TONG Pin-fen, SUN Xiao-mei, CAI Lu-kui, DAI Jie-jie. Study on Infectivity of EV71 in Kidney Cells of Tree Shrew [J]. Laboratory Animal and Comparative Medicine, 2017, 37(2): 123-129. |
[10] | ZHOU Wei-min, ZHU Ke-yan, CHEN Fang-ming, CAI Yue-qing, FANG Ming-sun, Qi Yue-han, CHEN min-li. Pathological Change of Kidney in Pkd1 Knock-out Mice with Polycystic Kidney Induced by Tamoxifen [J]. Laboratory Animal and Comparative Medicine, 2017, 37(1): 11-14. |
[11] | HUANG Jian-bing, DING Fang-bao, LIU Hao, MEI Ju. Improvement on Kidney Transplantation Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2015, 35(5): 374-377. |
[12] | JIANG Yan, WANG Wei, LI Ze-zheng, CHENG Jin, WANG Wei-wei, ZHANG Jin-yuan. Establishment and Evaluation of Acute Kidney Injury Mice Model by Ischemia Reperfusion and Cisplatin Induction [J]. Laboratory Animal and Comparative Medicine, 2014, 34(3): 187-192. |
[13] | JIA Lin-chao, LENG Xiao-xia, CHEN Min-li, PAN Yong-ming, SHOU Qi-yang, ZHOU Wei-min, TAO Tao, ZHU Ke-yan. Effect of Anti-aging Tablets on Special Learning Memory and Free Radical Metabolism in Brain of Kidney Deficiency Mouse [J]. Laboratory Animal and Comparative Medicine, 2011, 31(6): 432-435. |
[14] | LIN Ruo-qin, FU Xiao-qing, YANG Zhao-yang, ZHU Long, LI Hui-yong. Establishment of Chronic Renal Failure Model in Beagle Dogs by Integrative Operation [J]. Laboratory Animal and Comparative Medicine, 2011, 31(6): 459-461. |
[15] | SU Ping, FENG Yang, WU Yu, LIU Zhi-tao, CAI Shi-bin, WANG Ji-hong, DU Yong-hong. Pathobiological Observation on Effect of Melamine on Renal Development in Neonatal Rat [J]. Laboratory Animal and Comparative Medicine, 2011, 31(2): 102-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||