Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (1): 68-73.DOI: 10.12300/j.issn.1674-5817.2021.097
• Animal Models of Human Diseases • Previous Articles Next Articles
Renke HE1,2(), Cheng LU1,2, Wei CHEN1,2, Mengya WANG1, Aiping XU1(
)
Received:
2021-05-16
Revised:
2021-08-03
Online:
2022-02-25
Published:
2022-02-25
Contact:
Aiping XU
CLC Number:
Renke HE, Cheng LU, Wei CHEN, Mengya WANG, Aiping XU. Advances in Animal Models and Evaluation Methods of Pain and Depression Comorbidity[J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 68-73.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.097
1 | CHERIF F, ZOUARI H G, CHERIF W, et al. Depression prevalence in neuropathic pain and its impact on the quality of life[J]. Pain Res Manag, 2020, 2020:7408508. DOI:10.1155/2020/7408508 . |
2 | LI S, HUA D Y, WANG Q Y, et al. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress[J]. Int J Neuropsycho-pharmacol, 2020, 23(1):26-41. DOI:10.1093/ijnp/pyz061 . |
3 | BAIR M J, ROBINSON R L, KATON W, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20):2433-2445. DOI:10.1001/archinte.163.20.2433 . |
4 | EMMERICH A C, FRIEHS T, CROMBEZ G, et al. Self-compassion predicting pain, depression and anger in people suffering from chronic pain: a prospective study[J]. Eur J Pain, 2020, 24(10):1902-1914. DOI:10.1002/ejp.1638 . |
5 | UCKUN A C, DONMEZ B K, YURDAKUL F G, et al. The role of pain catastrophizing and depression in the outcomes of physical therapy in a prospective osteoarthritis cohort[J]. Pain Physician, 2020, 23(2):209-218. |
6 | ANGST F, BENZ T, LEHMANN S, et al. Extended overview of the longitudinal pain-depression association: a comparison of six cohorts treated for specific chronic pain conditions[J]. J Affect Disord, 2020, 273:508-516. DOI:10.1016/j.jad.2020. 05.044 . |
7 | SÁNCHEZ-RODRÍGUEZ E, ARAGONÈS E, JENSEN M P, et al. The role of pain-related cognitions in the relationship between pain severity, depression, and pain interference in a sample of primary care patients with both chronic pain and depression[J]. Pain Med, 2020, 21(10):2200-2211. DOI:10.1093/pm/pnz363 . |
8 | JIN Y, MENG Q, MEI L, et al. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain[J]. Pain, 2020, 161(2):416-428. DOI:10.1097/j.pain.0000000000001724 . |
9 | ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4):542-553. DOI:10.1038/s41593-021-00811-x . |
10 | ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10):1649-1658. DOI:10.1038/s41593-019-0468-2 . |
11 | GRÉGOIRE S, WATTIEZ A S, ETIENNE M, et al. Monoarthritis-induced emotional and cognitive impairments in rats are sensitive to low systemic doses or intra-amygdala injections of morphine[J]. Eur J Pharmacol, 2014, 735:1-9. DOI:10.1016/j.ejphar.2014.03.056 . |
12 | SILVA RODRIGUES J F, SILVA E SILVA C, FRANCA MUNIZ T, et al. Sulforaphane modulates joint inflammation in a murine model of complete Freund's adjuvant-induced mono-arthritis[J]. Molecules, 2018, 23(5):988. DOI:10.3390/molecules 23050988 . |
13 | JI R R, XU Z Z, GAO Y J. Emerging targets in neuro-inflammation-driven chronic pain[J]. Nat Rev Drug Discov, 2014, 13(7):533-548. DOI:10.1038/nrd4334 . |
14 | SUZUKI T, AMATA M, SAKAUE G, et al. Experimental neuropathy in mice is associated with delayed behavioral changes related to anxiety and depression[J]. Anesth Analg, 2007, 104(6):1570-7,tableofcontents. DOI:10.1213/01.ane. 0000261514.19946.66 . |
15 | HU X, DONG Y, JIN X, et al. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain[J]. Brain Behav Immun, 2017, 64:180-194. DOI:10.1016/j.bbi.2017.03.005 . |
16 | ZHU X, ZHOU W, JIN Y, et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression[J]. Cell Rep, 2019, 29(12):3847-3858.e5. DOI:10.1016/j.celrep. 2019.11.003 . |
17 | SANNA M D, LES F, LOPEZ V, et al. Lavender (Lavandula angustifolia mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury[J]. Front Pharmacol, 2019, 10:472. DOI:10.3389/fphar.2019.00472 . |
18 | ZHAO X, WANG C, ZHANG J F, et al. Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor[J]. Psychopharmacology (Berl), 2014, 231(10):2171-2187. DOI:10.1007/s00213-013-3368-2 . |
19 | ZHANG Y W, GAO T, LI X, et al. Circ_0005075 targeting miR-151a-3p promotes neuropathic pain in CCI rats via inducing NOTCH2 expression[J]. Gene, 2021, 767:145079. DOI:10.1016/j.gene.2020.145079 . |
20 | ZHANG W G, WANG F, ZHANG L C, et al. Intrathecal injection of ozone alleviates CCI‑induced neuropathic pain via the GluR6‑NF‑κB/p65 signalling pathway in rats[J]. Mol Med Rep, 2021, 23(4):231. DOI:10.3892/mmr.2021.11870 . |
21 | MEUWISSEN K P V, DE VRIES L E, GU J W, et al. Burst and tonic spinal cord stimulation both activate spinal GABAergic mechanisms to attenuate pain in a rat model of chronic neuropathic pain[J]. Pain Pract, 2020, 20(1):75-87. DOI:10.1111/papr.12831 . |
22 | BIRMANN P T, SOUSA F S S, DOMINGUES M, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice[J]. J Trace Elem Med Biol, 2019, 54:126-133. DOI:10.1016/j.jtemb.2019. 04.014 . |
23 | GARCIA MENDES M P, CARVALHO DOS SANTOS D, REZENDE M J S, et al. Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia[J]. Toxicon, 2021, 195:104-110. DOI:10.1016/j.toxicon.2021. 03.012 . |
24 | CHEAH M, FAWCETT J, ANDREWS M. Assessment of thermal pain sensation in rats and mice using the Hargreaves test[J]. Bio Protocol, 2017, 7(16): e2506. DOI:10.21769/bioprotoc.2506 . |
25 | MA Z, LI Y, ZHANG Y P, et al. Thermal nociception using a modified Hargreaves method in primates and humans[J]. Funct Neurol, 2015, 30(4):229-236. DOI:10.11138/fneur/2015. 30.4.229 . |
26 | AZIZ Z A A, NASIR H M, AHMAD A, et al. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats' assay[J]. Sci Rep, 2019, 9(1):13678. DOI:10.1038/s41598-019-50134-y . |
27 | SINGH P, KONGARA K, HARDING D, et al. Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin[J]. BMC Neurol, 2018, 18(1):43. DOI:10.1186/s12883-018-1047-y . |
28 | 余雪霏, 张铭勋, 方博文, 等. 大鼠光辐射热甩尾试验的时反应量-效关系[J]. 皖南医学院学报, 2014, 33(2):176-180. DOI:10.3969/j.issn.1002-0217.2014.02.029 . |
29 | BANNON A W, MALMBERG A B. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents[J]. Curr Protoc Neurosci, 2007, Chapter 8: Unit 8.9. DOI:10.1002/0471142301.ns0809s41 . |
30 | GURURAJAN A, REIF A, CRYAN J F, et al. The future of rodent models in depression research[J]. Nat Rev Neurosci, 2019, 20(11):686-701. DOI:10.1038/s41583-019-0221-6 . |
31 | XIA G B, HAN Y, MENG F T, et al. Reciprocal control of obesity and anxiety–depressive disorder via a GABA and serotonin neural circuit[J]. Mol Psychiatry, 2021:1-17. DOI:10.1038/s41380-021-01053-w . |
32 | CAO P, CHEN C M, LIU A, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines[J]. Neuron, 2021, 109(16):2573-2589.e9. DOI:10.1016/j.neuron.2021.06.012 . |
33 | PORSOLT R D, ANTON G, BLAVET N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments[J]. Eur J Pharmacol, 1978, 47(4):379-391. DOI:10.1016/0014-2999(78)90118-8 . |
34 | STERU L, CHERMAT R, THIERRY B, et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl), 1985, 85(3):367-370. DOI:10.1007/bf00428203 . |
35 | CUI Y, YANG Y, NI Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554(7692):323-327. DOI:10.1038/nature25752 . |
36 | KARBOWSKA M, HERMANOWICZ J M, TANKIEWICZ-KWEDLO A, et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model[J]. Sci Rep, 2020, 10(1):9483. DOI:10.1038/s41598-020-66421-y . |
37 | LUEPTOW L M. Novel object recognition test for the investigation of learning and memory in mice[J]. J Vis Exp, 2017(126): 55718. DOI:10.3791/55718 . |
38 | DENNINGER J K, SMITH B M, KIRBY E D. Novel object recognition and object location behavioral testing in mice on a budget[J]. J Vis Exp, 2018(141): 10.3791/58593. DOI:10.3791/58593 . |
39 | DULAWA S C, HEN R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test[J]. Neurosci Biobehav Rev, 2005, 29(4-5):771-783. DOI:10.1016/j.neubiorev.2005.03.017 . |
40 | QU S Y, LI X Y, HENG X, et al. Analysis of antidepressant activity of Huang-Lian Jie-du decoction through network pharmacology and metabolomics[J]. Front Pharmacol, 2021, 12:619288. DOI:10.3389/fphar.2021.619288 . |
41 | GOLDEN S A, COVINGTON H E, BERTON O, et al. A standardized protocol for repeated social defeat stress in mice[J]. Nat Protoc, 2011, 6(8):1183-1191. DOI:10.1038/nprot. 2011.361 . |
42 | GILAM G, GROSS J J, WAGER T D, et al. What is the relationship between pain and emotion? Bridging constructs and communities[J]. Neuron, 2020, 107(1):17-21. DOI:10.1016/j.neuron.2020.05.024 . |
43 | MALFLIET A, COPPIETERS I, WILGEN P VAN, et al. Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review[J]. Eur J Pain, 2017, 21(5):769-786. DOI:10.1002/ejp.1003 . |
44 | KUMMER K K, MITRIĆ M, KALPACHIDOU T, et al. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain[J]. Int J Mol Sci, 2020, 21(10): E3440. DOI:10.3390/ijms21103440 . |
45 | BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2):234-256. DOI:10.1016/j.neuron. 2020.06.002 . |
[1] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[2] | Shuo WANG, Yunhui LÜ, Xiaokang WANG, Zhenhao ZHANG, Yongchun CUI. Construction and Verification of Quality Evaluation Indicator System for Extracorporeal Membrane Oxygenation Animal Experimental Platform [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 604-611. |
[3] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[4] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[5] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[6] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[7] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[8] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[9] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[10] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[11] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[12] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[13] | Honghua XU, Tian JIN, Hai WANG, Mengying SHEN, Rui WANG, Yijia ZHOU, Ying TAN. Influence of Corneal Staining in Rabbits on the Evaluation of Eye Irritation Test Results [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 307-313. |
[14] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[15] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||