[1] WUTZ A.Haploid animal cells[J]. Development, 2014, 141(7):1423-1426. DOI:10.1242/dev.102202. [2] HARTWELL L H, CULOTTI J, PRINGLE J R, et al.Genetic control of the cell division cycle in yeast[J]. Science, 1974, 183(4120):46-51. DOI:10.1126/science.183.4120.46. [3] SHI L, YANG H, LI J.Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses[J]. Protein Cell, 2012, 3(11):806-810. DOI:10.1007/s13238-012-2096-4. [4] 丁一夫, 李劲松, 周琪. 哺乳动物单倍体胚胎干细胞的建立与应用[J]. 中国科学: 生命科学, 2019, 49(12):1635-1651. [5] TARKOWSKI A K, ROSSANT J.Haploid mouse blastocysts developed from bisected zygotes[J]. Nature, 1976, 259(5545):663-665. DOI:10.1038/259663a0. [6] TARKOWSKI A K, WITKOWSKA A, NOWICKA J.Experimental partheonogenesis in the mouse[J]. Nature, 1970, 226(5241):162-165. DOI:10.1038/226162a0. [7] MODLIŃSKI J A. Haploid mouse embryos obtained by microsurgical removal of one pronucleus[J]. J Embryol Exp Morphol, 1975, 33(4):897-905. [8] 陈俏羽, 王俊政, 李荣凤. 单倍体胚胎干细胞研究进展及思考[J]. 中国细胞生物学学报, 2017, 39(1):71-77. [9] LEEB M, WUTZ A.Derivation of haploid embryonic stem cells from mouse embryos[J]. Nature, 2011, 479(7371):131-134. DOI:10.1038/nature10448. [10] CARETTE J E, GUIMARAES C P, VARADARAJAN M, et al.Haploid genetic screens in human cells identify host factors used by pathogens[J]. Science, 2009, 326(5957):1231-1235. DOI:10.1126/science. 1178955. [11] CHONG M M, RASMUSSEN J P, RUDENSKY A Y, et al.The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease[J]. J Exp Med, 2008, 205(9):2005-2017. DOI:10.1084/jem. 20081219. [12] WU H, XU H, MIRAGLIA L J, et al.Human RNase III is a 160-kDa protein involved in preribosomal RNA processing[J]. J Biol Chem, 2000, 275(47):36957-36965. DOI:10.1074/jbc.m005494200. [13] ELLING U, TAUBENSCHMID J, WIRNSBERGER G, et al.Forward and reverse genetics through derivation of haploid mouse embryonic stem cells[J]. Cell Stem Cell, 2011, 9(6):563-574. DOI:10.1016/j.stem.2011.10.012. [14] NÜSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785):795-801. DOI:10.1038/287795a0. [15] VANHOOREN V, LIBERT C.The mouse as a model organism in aging research: usefulness, pitfalls and possibilities[J]. Ageing Res Rev, 2013, 12(1):8-21. DOI:10.1016/j.arr.2012.03.010. [16] IKEHARA Y, YAMAGUCHI T, IKEHARA S.Mouse models of cancer[M]//Glycoscience: Biology and Medicine. Tokyo: Springer Japan, 2014:1-5. DOI:10.1007/978-4-431-54836-2_194-1. [17] SILVERMAN J L, YANG M, LORD C, et al.Behavioural phenotyping assays for mouse models of autism[J]. Nat Rev Neurosci, 2010, 11(7):490-502. DOI:10.1038/nrn2851. [18] GOODWILL H L, MANZANO-NIEVES G, GALLO M, et al.Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model[J]. Neuropsychopharmacology, 2019, 44(4):711-720. DOI:10.1038/s41386-018-0195-5. [19] KEPPLEY L J W, WALKER S J, GADEMSEY A N, et al. Nervonic acid limits weight gain in a mouse model of diet-induced obesity[J]. Faseb J, 2020, 34(11):15314-15326. DOI:10.1096/fj.202000525r. [20] YANG H, SHI L, WANG B A, et al.Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells[J]. Cell, 2012, 149(3):605-617. DOI:10.1016/j.cell.2012.04.002. [21] WANG L B, LI J S.'Artificial spermatid'-mediated genome editing[J]. Biol Reprod, 2019, 101(3):538-548. DOI:10.1093/biolre/ioz087. [22] SUBTELNY S.The development of haploid and homozygous diploid frog embryos obtained from transplantations of haploid nuclei[J]. J Exp Zool, 1958, 139(2):263-305. DOI:10.1002/jez.1401390204. [23] FREED J J, MEZGER-FREED L.Stable haploid cultured cell lines from frog embryos[J]. PNAS, 1970, 65(2):337-344. DOI:10.1073/pnas.65.2.337. [24] PHILIPPE C, LANDUREAU J C.Culture of cockroach embryonic cells and hemocytes of parthenogenic origin. Maintainance in vitro of haploid and aneuploid forms[J]. Exp Cell Res, 1975, 96(2):287-296. DOI:10.1016/0014-4827(75)90259-1. [25] DEBEC A.Haploid cell cultures of Drosophila melanogaster[J]. Nature, 1978, 274(5668):255-256. DOI:10.1038/274255a0. [26] KOTECKI M, REDDY P S, COCHRAN B H.Isolation and characterization of a near-haploid human cell line[J]. Exp Cell Res, 1999, 252(2):273-280. DOI:10.1006/excr.1999.4656. [27] YI M, HONG N, HONG Y.Generation of medaka fish haploid embryonic stem cells[J]. Science, 2009, 326(5951):430-433. DOI:10.1126/science.1175151. [28] YING Q L, WRAY J, NICHOLS J, et al.The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453(7194):519-523. DOI:10.1038/nature06968. [29] DAVIES S P, REDDY H, CAIVANO M, et al.Specificity and mechanism of action of some commonly used protein kinase inhibitors[J]. Biochem J, 2000, 351(pt 1):95-105. DOI:10.1042/0264-6021:3510095. [30] LI W, SHUAI L, WAN H, et al.Androgenetic haploid embryonic stem cells produce live transgenic mice[J]. Nature, 2012, 490(7420):407-411. DOI:10.1038/nature11435. [31] ZHONG C, YIN Q, XIE Z, et al.CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library[J]. Cell Stem Cell, 2015, 17(2):221-232. DOI:10.1016/j.stem.2015.06.005. [32] YANG H, LIU Z, MA Y, et al.Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes[J]. Cell Res, 2013, 23(10):1187-1200. DOI:10.1038/cr.2013.93. [33] LI X, CUI X L, WANG J Q, et al.Generation and application of mouse-rat allodiploid embryonic stem cells[J]. Cell, 2016, 164(1-2):279-292. DOI:10.1016/j.cell.2015.11.035. [34] SAGI I, CHIA G, GOLAN-LEV T, et al.Derivation and differentiation of haploid human embryonic stem cells[J]. Nature, 2016, 532(7597):107-111. DOI:10.1038/nature17408. [35] ZHONG C, ZHANG M, YIN Q, et al.Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus[J]. Cell Res, 2016, 26(6):743-746. DOI:10.1038/cr.2016.59. [36] LI Z, WAN H, FENG G, et al.Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells[J]. Cell Res, 2016, 26(1):135-138. DOI:10.1038/cr.2015.151. [37] LI Z K, WANG L Y, WANG L B, et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions[J]. Cell Stem Cell, 2018, 23(5):665-676.e4. DOI:10.1016/j.stem.2018.09.004. [38] JAENISCH R, MINTZ B.Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J]. PNAS, 1974, 71(4):1250-1254. DOI:10.1073/pnas.71. 4.1250. [39] JAENISCH R.Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus[J]. PNAS, 1976, 73(4):1260-1264. DOI:10.1073/pnas. 73.4.1260. [40] GORDON J W, SCANGOS G A, PLOTKIN D J, et al.Genetic transformation of mouse embryos by microinjection of purified DNA[J]. PNAS, 1980, 77(12):7380-7384. DOI:10.1073/pnas.77.12.7380. [41] EVANS M J, KAUFMAN M H.Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156. DOI:10.1038/292154a0. [42] SMITHIES O, GREGG R G, BOGGS S S, et al.Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination[J]. Nature, 1985, 317(6034):230-234. DOI:10.1038/317230a0. [43] RAABE T, WESSELSCHMIDT R L. Genetic manipulation of embryonic stem cells[J/OL]. Human Stem Cell Manual, 2007:267-288. https://doi.org/10.1016/B978-012370465-8/50025-9. [44] THOMAS K R, CAPECCHI M R.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J]. Cell, 1987, 51(3):503-512. DOI:10.1016/0092-8674(87)90646-5. [45] GU H, ZOU Y R, RAJEWSKY K.Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting[J]. Cell, 1993, 73(6):1155-1164. DOI:10.1016/0092-8674(93)90644-6. [46] GEURTS A M, COST G J, FREYVERT Y, et al.Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939):433. DOI:10.1126/science.1172447. [47] MEYER M, DE ANGELIS M H, WURST W, et al. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases[J]. PNAS, 2010, 107(34):15022-15026. DOI:10.1073/pnas. 1009424107. [48] JINEK M, CHYLINSKI K, FONFARA I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. DOI:10.1126/science.1225829. [49] CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. DOI:10.1126/science. 231143. [50] FRASER M J, CARY L, BOONVISUDHI K, et al.Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA[J]. Virology, 1995, 211(2):397-407. DOI:10.1006/viro.1995.1422. [51] WILKIE T M, BRINSTER R L, PALMITER R D.Germline and somatic mosaicism in transgenic mice[J]. Dev Biol, 1986, 118(1):9-18. DOI:10.1016/0012-1606(86)90068-0. [52] WANG H, YANG H, SHIVALILA C S, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. DOI:10.1016/j.cell. 2013.04.025. [53] YEN S T, ZHANG M, DENG J M, et al.Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes[J]. Dev Biol, 2014, 393(1):3-9. DOI:10.1016/j.ydbio.2014.06.017. [54] TARKOWSKI A K.Mouse chimæras developed from fused eggs[J]. Nature, 1961, 190(4779):857-860. DOI:10.1038/190857a0. [55] GARDNER R L.Mouse chimeras obtained by the injection of cells into the blastocyst[J]. Nature, 1968, 220(5167):596-597. DOI:10.1038/220596a0. [56] MAHADEVAN M, TSILFIDIS C, SABOURIN L, et al.Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene[J]. Science, 1992, 255(5049):1253-1255. DOI:10.1126/science.1546325. [57] BROOK J D, MCCURRACH M E, HARLEY H G, et al.Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 68(4):799-808. DOI:10.1016/0092-8674(92)90154-5. [58] YIN Q, WANG H, LI N, et al.Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1[J]. Cell Res, 2020, 30(2):133-145. DOI:10.1038/s41422-019-0264-2. [59] PETTERSSON O J, AAGAARD L, JENSEN T G, et al.Molecular mechanisms in DM1-a focus on foci[J]. Nucleic Acids Res, 2015, 43(4):2433-2441. DOI:10.1093/nar/gkv029. [60] LEE J E, COOPER T A.Pathogenic mechanisms of myotonic dystrophy[J]. Biochem Soc Trans, 2009, 37(pt 6):1281-1286. DOI:10.1042/bst0371281. [61] KLESERT T R, CHO D H, CLARK J I, et al.Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy[J]. Nat Genet, 2000, 25(1):105-109. DOI:10.1038/75490. [62] JANSEN G, GROENEN P J, BÄCHNER D, et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice[J]. Nat Genet, 1996, 13(3):316-324. DOI:10.1038/ng0796-316. [63] SARKAR P S, APPUKUTTAN B, HAN J, et al.Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts[J]. Nat Genet, 2000, 25(1):110-114. DOI:10.1038/75500. [64] MANKODI A, LOGIGIAN E, CALLAHAN L, et al.Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat[J]. Science, 2000, 289(5485):1769-1773. DOI:10.1126/science.289.5485.1769. [65] GROENEN P, WIERINGA B. Expanding complexity in myotonic dystrophy[J]. Bioessays, 1998, 20(11):901-912. DOI:10.1002/(sici)1521-1878(199811)20:11<901: aid-bies5>3.0.co;2-0. [66] LARKIN K, FARDAEI M.Myotonic dystrophy: a multigene disorder[J]. Brain Res Bull, 2001, 56(3-4):389-395. DOI:10.1016/s0361-9230(01)00656-6. [67] VISOOTSAK J, GRAHAM J M.Klinefelter syndrome and other sex chromosomal aneuploidies[J]. Orphanet J Rare Dis, 2006, 1:42. DOI:10.1186/1750-1172-1-42. [68] RACKOW B W, ARICI A.Reproductive performance of women with müllerian anomalies[J]. Curr Opin Obstet Gynecol, 2007, 19(3):229-237. DOI:10.1097/gco.0b013e32814b0649. [69] KOBAYASHI A, BEHRINGER R R.Developmental genetics of the female reproductive tract in mammals[J]. Nat Rev Genet, 2003, 4(12):969-980. DOI:10.1038/nrg1225. [70] WANG L, ZHANG Y, FU X, et al.Joint utilization of genetic analysis and semi-cloning technology reveals a digenic etiology of Müllerian anomalies[J]. Cell Res, 2020, 30(1):91-94. DOI:10.1038/s41422-019-0243-7. [71] BAI M, HAN Y, WU Y, et al.Targeted genetic screening in mice through haploid embryonic stem cells identifies critical genes in bone development[J]. PLoS Biol, 2019, 17(7): e3000350. DOI:10.1371/journal.pbio.3000350. [72] LI Q, LI Y, YANG S, et al.CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development[J]. Nat Cell Biol, 2018, 20(11):1315-1325. DOI:10.1038/s41556-018-0202-4. [73] LI Q, LI Y, YANG S, et al.CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development[J]. Nat Cell Biol, 2018, 20(11):1315-1325. DOI:10.1038/s41556-018-0202-4. [74] BADANO J L, KATSANIS N.Beyond Mendel: an evolving view of human genetic disease transmission[J]. Nat Rev Genet, 2002, 3(10):779-789. DOI:10.1038/nrg910. [75] 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(5):540-543. DOI:10.16150/j.1671-2870.2020.05.019. [76] AL-CHALABI A, HARDIMAN O.The epidemiology of ALS: a conspiracy of genes, environment and time[J]. Nat Rev Neurol, 2013, 9(11):617-628. DOI:10.1038/nrneurol.2013.203. [77] CHIÒ A, LOGROSCINO G, HARDIMAN O, et al.Prognostic factors in ALS: a critical review[J]. Amyotroph Lateral Scler, 2009, 10(5-6):310-323. DOI:10.3109/17482960802566824. [78] RAAPHORST J, DE VISSER M, LINSSEN W H, et al.The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis[J]. Amyotroph Lateral Scler, 2010, 11(1-2):27-37. DOI:10.3109/17482960802645008. [79] CASTELLANOS-MONTIEL M J, CHAINEAU M, DURCAN T M. The neglected genes of ALS: cytoskeletal dynamics impact synaptic degeneration in ALS[J]. Front Cell Neurosci, 2020, 14:594975. DOI:10.3389/fncel.2020.594975. [80] SELLIER C, CAMPANARI M L, JULIE CORBIER C, et al.Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death[J]. EMBO J, 2016, 35(12):1276-1297. DOI:10.15252/embj.201593350. [81] TAYLOR J P, BROWN R H, CLEVELAND D W.Decoding ALS: from genes to mechanism[J]. Nature, 2016, 539(7628):197-206. DOI:10.1038/nature20413. [82] GERBINO V, KAUNGA E, YE J, et al. The loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice[J]. Neuron, 2020, 106(5):789-805.e5. DOI:10.1016/j.neuron.2020.03.005. [83] GURNEY M E, PU H, CHIU A Y, et al.Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation[J]. Science, 1994, 264(5166):1772-1775. DOI:10.1126/science.8209258. [84] CHOU S M, WANG H S, KOMAI K.Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study[J]. J Chem Neuroanat, 1996, 10(3-4):249-258. DOI:10.1016/0891-0618(96)00137-8. [85] BENDOTTI C, TORTAROLO M, SUCHAK S K, et al.Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels[J]. J Neurochem, 2001, 79(4):737-746. DOI:10.1046/j.1471-4159.2001.00572.x. [86] PHILIPS T, ROBBERECHT W.Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease[J]. Lancet Neurol, 2011, 10(3):253-263. DOI:10.1016/s1474-4422(11)70015-1. [87] PHILIPS T, ROTHSTEIN J D. Rodent models of amyotrophic lateral sclerosis[J]. Curr Protoc Pharmacol, 2015, 69:5.67.1-5.67.21. DOI:10.1002/0471141755.ph0567s69. [88] NIAKAN K K, HAN J N, PEDERSEN R A, et al.Human pre-implantation embryo development[J]. Dev Camb Engl, 2012, 139(5):829-841. DOI:10.1242/dev. 060426. [89] HASSOLD T, HUNT P.To err (meiotically) is human: the Genesis of human aneuploidy[J]. Nat Rev Genet, 2001, 2(4):280-291. DOI:10.1038/35066065. [90] GROPP A, WINKING H, HERBST E W, et al.Murine trisomy: developmental profiles of the embryo, and isolation of trisomic cellular systems[J]. J Exp Zool, 1983, 228(2):253-269. DOI:10.1002/jez.1402280210. [91] BAKER D J, JEGANATHAN K B, CAMERON J D, et al.BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice[J]. Nat Genet, 2004, 36(7):744-749. DOI:10.1038/ng1382. [92] LAVON N, NARWANI K, GOLAN-LEV T, et al.Derivation of euploid human embryonic stem cells from aneuploid embryos[J]. Stem Cells, 2008, 26(7):1874-1882. DOI:10.1634/stemcells.2008-0156. [93] BOLTON H, GRAHAM S J L, VAN DER AA N, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential[J]. Nat Commun, 2016, 7:11165. DOI:10.1038/ncomms11165. [94] DAVISSON M T, SCHMIDT C, AKESON E C.Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome[J]. Prog Clin Biol Res, 1990, 360:263-280. [95] 赵国屏. 从人类基因组计划到精准医学——比较医学的发展趋势与挑战[J]. 实验动物与比较医学, 2021, 41(1):1-8. DOI:10.12300/j.issn.1674-5817.2021.022. |