Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (3): 243-250.DOI: 10.12300/j.issn.1674-5817.2023.166
• Animal Models of Human Diseases • Next Articles
Jing QIN, Yong ZHAO, Caiqin ZHANG, Bing BAI, Changhong SHI()(
)
Received:
2023-11-21
Revised:
2024-04-14
Online:
2024-06-25
Published:
2024-07-06
Contact:
Changhong SHI
CLC Number:
Jing QIN,Yong ZHAO,Caiqin ZHANG,et al. Construction and Evaluation of Theranostic Near-infrared Fluorescent Probe for Targeting Inflammatory Brain Edema[J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 243-250. DOI: 10.12300/j.issn.1674-5817.2023.166.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.166
Figure 1 Structure and characterization of the IR-783-FSM probeNote:A, Structure of IR-783-FSM; B, Nuclear magnetic resonance hydrogen spectrum of IR-783-FSM; C, Fluorescence intensity of IR-783-FSM in different solvents (in the left graph, the solvents from left to right are DMSO, H2O, and PBS; in the right graph, the solvents from left to right are H2O and PBS); D, Fluorescence spectra (left) and absorbance spectra (right) of IR-783-FSM.
Figure 2 In vitro cellular uptake ability and cytotoxicity of IR-783-FSM probe in mouse macrophagesNote:Near-infrared fluorescence microscopy was used to observe the uptake ability of mouse macrophages RAW 264.7 to IR-783-FSM probe (Red fluorescence indicated IR-783-FSM probe. Blue fluorescence indicated the nucleus marked by DAPI. Merged plots represented the entry of the IR-783-FSM probe into cells). B, The viability of mouse macrophages RAW 264.7 treated with IR-783-FSM probe was assessed by CCK8 assay.
Figure 3 The mouse model of lipopolysaccharide-induced brain edema was successfully constructedNote:A, After intraperitoneal injection of lipopolysaccharide (LPS), mice appeared lethargic (left) with diarrhea (right). B, HE staining was used to observe the pathological sections of brain tissues in mice after model construction with LPS intraperitoneal injection (left image indicated the blank group injected with normal saline, and the right indicated the mice injected with LPS, while the arrows indicated marked widening of the perivascular spaces, indicating cerebral edema).
Figure 4 Fluorescence imaging results of IR-783 and IR-783-FSM in a mouse model of brain edemaNote: A, In vivo and ex vivo near-infrared fluorescence imaging 10 h after intraperitoneal injections of PBS, IR-783, and IR-783-FSM; B, Real-time near-infrared fluorescence imaging of IR-783-FSM in a mouse model of brain edema; C, Quantitative analysis of near-infrared fluorescence imaging of IR-783-FSM in a mouse model of brain edema (ROI represents regions of interest).
给药分组(n=5) Grouping and administration (n=5) | 脑组织含水量/% Brain water content/% |
---|---|
PBS | 79.511±0.483 |
5 mmol/L IR-783 | 78.364±0.949 |
2 mmol/L IR-783-FSM | 77.988±0.124** |
5 mmol/L IR-783-FSM | 77.276±0.816** |
8 mmol/L IR-783-FSM | 77.364±0.949** |
Table 1 Changes of brain water content in mice with brain edema treated with IR-783-FSM
给药分组(n=5) Grouping and administration (n=5) | 脑组织含水量/% Brain water content/% |
---|---|
PBS | 79.511±0.483 |
5 mmol/L IR-783 | 78.364±0.949 |
2 mmol/L IR-783-FSM | 77.988±0.124** |
5 mmol/L IR-783-FSM | 77.276±0.816** |
8 mmol/L IR-783-FSM | 77.364±0.949** |
1 | 杜安妮, 石京山. 创伤性脑损伤动物模型的新进展[J]. 现代医药卫生, 2015, 31(4):526-529. DOI:10.3969/j.issn.1009-5519.2015.04.016 . |
DU A N, SHI J S. New progress in animal models of traumatic brain injury[J]. J Mod Med Health, 2015, 31(4):526-529. DOI:10. 3969/j.issn.1009-5519.2015.04.016 . | |
2 | 吴志敏, 沈素兴. 基层训练伤康复治疗的现状与思考[J]. 西南军医, 2019, 21(3):284-286. DOI: 10.3969/j.issn.1672-7193.2019.03.029 . |
WU Z M, SHEN S X. Present situation and thinking of rehabilitation treatment of training injuries at the grass-roots level[J]. J Mil Surg Southwest China, 2019, 21(3):284-286. DOI: 10.3969/j.issn.1672-7193.2019.03.029 . | |
3 | 李慧堂, 张岱男, 张新中, 等. 黄芪甲苷对大鼠创伤性脑损伤后脑水肿、炎症反应、细胞凋亡的影响[J]. 现代中西医结合杂志, 2022, 31(9):1198-1203, 1223. DOI: 10.3969/j.issn.1008-8849.2022.09.006 . |
LI H T, ZHANG D N, ZHANG X Z, et al. Effects of astragaloside Ⅳ on brain edema, inflammatory response and cell apoptosis after traumatic brain injury in rats[J]. Mod J Integr Tradit Chin West Med, 2022, 31(9):1198-1203, 1223. DOI: 10.3969/j.issn.1008-8849.2022.09.006 . | |
4 | ZHANG C, LEE J Y, KEEP R F, et al. Brain edema formation and complement activation in a rat model of subarachnoid hemorrhage[J]. Acta Neurochir Suppl, 2013, 118:157-161. DOI: 10.1007/978-3-7091-1434-6_29 . |
5 | 姚奔驰. 托拉塞米与呋塞米治疗脑出血后急性脑水肿患者的临床效果[J]. 中国药物经济学, 2021, 16(3):109-111, 119. DOI: 10.12010/j.issn.1673-5846.2021.03.028 . |
YAO B C. Clinical effects of torasemide and furosemide in the treatment of patients with acute cerebral edema after cerebral hemorrhage[J]. China J Pharm Econ, 2021, 16(3):109-111, 119. DOI: 10.12010/j.issn.1673-5846.2021.03.028 . | |
6 | 郦昱琨, 尹文俊, 安晓婕, 等. 呋塞米与甘露醇联用致脑水肿患者急性肾损伤风险因素分析及预测[J]. 中国新药与临床杂志, 2022, 41(5):286-290. DOI: 10.14109/j.cnki.xyylc.2022.05.07 . |
LI Y K, YIN W J, AN X J, et al. Risk factor analysis and prediction of acute kidney injury in patients with cerebral edema treated with furosemide and mannitol[J]. Chin J N Drugs Clin Remedies, 2022, 41(5):286-290. DOI: 10.14109/j.cnki.xyylc.2022.05.07 . | |
7 | HAN X Y, SONG X Y, YU F B, et al. A ratiometric near-infrared fluorescent probe for quantification and evaluation of selenocysteine-protective effects in acute inflammation[J]. Adv Funct Materials, 2017, 27(28):1700769. DOI: 10.1002/adfm.201700769 . |
8 | HUANG J, JIANG Y, LI J, et al. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer[J]. Angew Chem Int Ed Engl, 2020, 59(11):4415-4420. DOI: 10.1002/anie.201911859 . |
9 | ZHANG C Q, ZHAO Y, ZHANG H, et al. The application of heptamethine cyanine dye DZ-1 and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma[J]. Int J Mol Sci, 2017, 18(6):1332. DOI: 10.3390/ijms18061332 . |
10 | GUSDON A M, GIALDINI G, KONE G, et al. Neutrophil-lymphocyte ratio and perihematomal edema growth in intracerebral hemorrhage[J]. Stroke, 2017, 48(9):2589-2592. DOI: 10.1161/STROKEAHA.117.018120 . |
11 | RENDEVSKI V, ALEKSOVSKI B, MIHAJLOVSKA RENDEVSKA A, et al. Inflammatory and oxidative stress markers in intracerebral hemorrhage: relevance as prognostic markers for quantification of the edema volume[J]. Brain Pathol, 2023, 33(2): e13106. DOI: 10.1111/bpa.13106 . |
12 | SHI C H, WU J B, CHU G C Y, et al. Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF-1α/OATPs signaling axis[J]. Oncotarget, 2014, 5(20):10114-10126. DOI: 10.18632/oncotarget.2464 . |
13 | ZHANG C Q, ZHAO Y, ZHAO N N, et al. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye[J]. Contrast Media Mol Imaging, 2018, 2018:4979746. DOI: 10.1155/2018/4979746 . |
14 | YANG X J, SHI C M, TONG R, et al. Near IR heptamethine cyanine dye-mediated cancer imaging[J]. Clin Cancer Res, 2010, 16(10):2833-2844. DOI: 10.1158/1078-0432.CCR-10-0059 . |
15 | QIN J, ZHANG C Q, ZHAO Y, et al. Small mitochondria-targeting fluorophore with multifunctional therapeutic activities against prostate cancer via the HIF1α/OATPs pathway[J]. Mol Pharmaceutics, 2023, 20(12):6226-6236. DOI: 10.1021/acs.molpharmaceut.3c00621 . |
16 | 曹传顶. 3%氯化钠对脂多糖小鼠脑水肿的保护作用及非渗透机制研究[D]. 长沙: 中南大学, 2014. |
CAO C D. Protective effect of 3% sodium chloride on brain edema in lipopolysaccharide mice and its non-osmotic mechanism [D]. Changsha: Central South University, 2014. | |
17 | 吴俊杰. 基于活体成像的大鼠脑水肿模型评价指标体系的建立及冰片对脂多糖致大鼠脑水肿的改善作用机制研究[D]. 重庆: 西南大学, 2019. |
WU J J. Establishment of evaluation index system of rat brain edema model based on in vivo imaging and the mechanism of borneol in improving lipopolysaccharide induced brain edema in rats[D]. Chongqing: Southwest University, 2019. | |
18 | 宁雪, 刘洋洋, 李韪韬. 甘露醇对脂多糖致小鼠脑水肿治疗的多参数评估[J]. 生物医学工程研究, 2021, 40(1):43-48. DOI: 10.19529/j.cnki.1672-6278.2021.01.08 . |
NING X, LIU Y Y, LI W T. Multi parameter evaluation of mannitol in the treatment of lipopolysaccharide induced brain edema in mice[J]. J Biomed Eng Res, 2021, 40(1):43-48. DOI: 10.19529/j.cnki.1672-6278.2021.01.08 . | |
19 | MAAS A I R, MENON D K, ADELSON P D, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12):987-1048. DOI: 10.1016/S1474-4422(17)30371-X . |
20 | 冯华, 李文, 谭亮, 等. 颅脑创伤病情评估多模态监测系统[J]. 中国现代神经疾病杂志, 2020, 20(7):568-576. DOI: 10.3969/j.issn.1672-6731.2020.07.002 . |
FENG H, LI W, TAN L, et al. Multimodal monitoring system in traumatic brain injury[J]. Chin J Contemp Neurol Neurosurg, 2020, 20(7):568-576. DOI: 10.3969/j.issn.1672-6731.2020.07.002 . | |
21 | 亢璐, 郑瑞, 杨智航, 等. 银杏叶提取物通过VEGF/PI3 K/Akt1信号通路改善大鼠创伤性脑水肿[J]. 中国老年学杂志, 2021, 41(1):157-160. DOI: 10.3969/j.issn.1005-9202.2021.01.045 . |
KANG L, ZHENG R, YANG Z H, et al. Ginkgo biloba extract improves traumatic brain edema in rats through VEGF/PI3K/Akt1 signaling pathway[J]. Chin J Gerontol, 2021, 41(1):157-160. DOI: 10.3969/j.issn.1005-9202.2021.01.045 . | |
22 | 张建海, 黄生炫, 康泽辉, 等. 甘露醇、呋塞米联合白蛋白治疗脑外伤后脑水肿的临床价值[J]. 中国药物滥用防治杂志, 2022, 28(11):1646-1649. DOI: 10.15900/j.cnki.zylf1995.2022.11.026 . |
ZHANG J H, HUANG S X, KANG Z H, et al. Clinical value of mannitol, furosemide combined with albumin in the treatment of cerebral edema after traumatic brain injury[J]. Chin J Drug Abuse Prev Treat, 2022, 28(11):1646-1649. DOI: 10.15900/j.cnki.zylf1995.2022.11.026 . | |
23 | 霍学智. 观察呋塞米治疗急性脑出血并脑水肿患者的疗效与不良反应[J]. 医学食疗与健康, 2021, 19(3):58-59. |
HUO X Z. To observe the efficacy and side effects of furosemide in the treatment of patients with acute cerebral hemorrhage complicated with cerebral edema[J]. Med Diet Health, 2021, 19(3):58-59. | |
24 | HU Z H, CHEN W H, TIAN J, et al. NIRF nanoprobes for cancer molecular imaging: approaching clinic[J]. Trends Mol Med, 2020, 26(5):469-482. DOI: 10.1016/j.molmed.2020.02.003 . |
25 | LI W X, LI R, CHEN R, et al. Activatable fluorescent-photoacoustic integrated probes with deep tissue penetration for pathological diagnosis and therapeutic evaluation of acute inflammation in mice[J]. Anal Chem, 2022, 94(22):7996-8004. DOI: 10.1021/acs.analchem.2c01048 . |
26 | SUZUKI Y, KAJITA H, KONISHI N, et al. Subcutaneous lymphatic vessels in the lower extremities: comparison between photoacoustic lymphangiography and near-infrared fluorescence lymphangiography[J]. Radiology, 2020, 295(2):469-474. DOI: 10.1148/radiol.2020191710 . |
27 | ZHANG Y, LI W, CHEN X Q, et al. Liver-targeted near-infrared fluorescence/photoacoustic dual-modal probe for real-time imaging of In situ hepatic inflammation[J]. Anal Chem, 2023, 95(4):2579-2587. DOI: 10.1021/acs.analchem.2c05476 . |
28 | SONG J W, NAM H S, AHN J W, et al. Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque[J]. Theranostics, 2021, 11(18):8874-8893. DOI: 10.7150/thno.59759 . |
29 | IKEDA H, ISHII A, SANO K, et al. Activatable fluorescence imaging of macrophages in cerebral aneurysms using iron oxide nanoparticles conjugated with indocyanine green[J]. Front Neurosci, 2020, 14:370. DOI: 10.3389/fnins.2020.00370 . |
[1] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
[2] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
[3] | ZHANG Nan, LI Huaiyin, LIAN Xiaodi, WEI Juanpeng, GAO Ming. Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 73-78. |
[4] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[5] | TAN He, YANG Xiaohui, ZHANG Daxiu, WANG Guicheng. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. |
[6] | MENG Yu, LIANG Dongli, ZHENG Linlin, ZHOU Yuanyuan, WANG Zhaoxia. Optimization and Evaluation of Conditions for Orthotopic Nude Mouse Models of Human Liver Tumor Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 511-522. |
[7] | Yisu ZHANG, Xinru LIU, Ruojie WU, Rui LIU, Hong OUYANG, Xiaohong LI. Establishment and Evaluation of Mouse Model of Pregnancy Pain-depression Comorbidity Induced by Chronic Unpredictable Stress, Complete Freund's Adjuvant and Formalin [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 259-269. |
[8] | Dong WU, Rui SHI, Peishan LUO, Ling'en LI, Xijing SHENG, Mengyang WANG, Lu NI, Sujuan WANG, Huixin YANG, Jing ZHAO. Effects of Different Pellet Feed Hardness on Growth and Reproduction, Feed Utilization Rate, and Environmental Dust in Laboratory Mice [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 313-320. |
[9] | Yun LIU, Tingting FENG, Wei TONG, Zhi GUO, Xia LI, Qi KONG, Zhiguang XIANG. Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 251-258. |
[10] | Jinhua HU, Jingjie HAN, Min JIN, Bin HU, Yuefen LOU. Effects of Puerarin on Bone Density in Rats and Mice: A Meta-analysis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 149-161. |
[11] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
[12] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[13] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[14] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[15] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||