Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (3): 262-270.DOI: 10.12300/j.issn.1674-5817.2023.006
• Experimental Animal and Comparative Pharmacology • Previous Articles Next Articles
Yuan ZHANG1()(
), Han LI2(
)(
), Chengfang ZHANG1(
)(
)
Received:
2023-02-01
Revised:
2023-04-11
Online:
2023-06-25
Published:
2023-06-25
Contact:
Chengfang ZHANG
CLC Number:
Yuan ZHANG,Han LI,Chengfang ZHANG. Whole-brain Transcriptomic Analysis of Weight Gain Mice induced by Olanzapine[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 262-270. DOI: 10.12300/j.issn.1674-5817.2023.006.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.006
基因名称 | 引物序列(5'→3') |
---|---|
β-Actin | F: GTGCTATGTTGCTCTAGACTTCG |
R: ATGCCACAGGATTCCATACC | |
Oxt | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA | |
Trpv1 | F: GGGCGAGACTGTCAACAAGA |
R: CGGCTCTATTGCTCCCTGAG | |
Adipoq | F: TGCCCTGTAACTTCTACCCCA |
R: GGCAAGTGTCCTCAACTGTGTC | |
Phox2b | F: TACGCCGCAGTTCCATACAAACTC |
R: TCTTTGAGCTGCGCGCTTGTGAAG | |
Abcg5 | F: GTTCCAAGACTGCTTCTC |
R: ATGACTGCCTCTACCTTC | |
Mogat2 | F: CCAGGTTGAGAACACCCCTG |
R: CTCGATGGGCTTCCCCACTAT | |
Dbh | F: AATCTGCAGCCTTTGCCTAA |
R: TTCAGCATCTGCCTCTGTTG | |
Plac8 | F: TGGACTACAAAGACGATGACGA |
R: ACAAAAGGTCCCACAGAGGC | |
Neurog1 | F: CGATCCCCTTTTCTCCTTTC |
R: TGCAGCAACCTAACAAGTGG | |
Fos | F: TTTCAACGCGGACTACGAGG |
R: GCGCAAAAGTCCTGTGTGTT | |
Dusp1 | F: TGTGAAGCAGAGGAGGAGC |
R: ACGCACGGCATGTTGGTC | |
Egr2 | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA |
Table 1 Primer sequences of differential genes used in real-time quantitative fluorescence PCR
基因名称 | 引物序列(5'→3') |
---|---|
β-Actin | F: GTGCTATGTTGCTCTAGACTTCG |
R: ATGCCACAGGATTCCATACC | |
Oxt | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA | |
Trpv1 | F: GGGCGAGACTGTCAACAAGA |
R: CGGCTCTATTGCTCCCTGAG | |
Adipoq | F: TGCCCTGTAACTTCTACCCCA |
R: GGCAAGTGTCCTCAACTGTGTC | |
Phox2b | F: TACGCCGCAGTTCCATACAAACTC |
R: TCTTTGAGCTGCGCGCTTGTGAAG | |
Abcg5 | F: GTTCCAAGACTGCTTCTC |
R: ATGACTGCCTCTACCTTC | |
Mogat2 | F: CCAGGTTGAGAACACCCCTG |
R: CTCGATGGGCTTCCCCACTAT | |
Dbh | F: AATCTGCAGCCTTTGCCTAA |
R: TTCAGCATCTGCCTCTGTTG | |
Plac8 | F: TGGACTACAAAGACGATGACGA |
R: ACAAAAGGTCCCACAGAGGC | |
Neurog1 | F: CGATCCCCTTTTCTCCTTTC |
R: TGCAGCAACCTAACAAGTGG | |
Fos | F: TTTCAACGCGGACTACGAGG |
R: GCGCAAAAGTCCTGTGTGTT | |
Dusp1 | F: TGTGAAGCAGAGGAGGAGC |
R: ACGCACGGCATGTTGGTC | |
Egr2 | F: TTGACCAGATGAACGGAGTG |
R: AGCTACTCGGATACGGGAGA |
Figure 1 Changes of body weight and food intake induced by olanzapine administrationNote:A, Changes in body weight induced by olanzapine administration; B, Changes in food intake induced by olanzapine administration. n=10 in each group. Ctrl, control group (intragastric injection with saline); Olz, olanzapine group (intragastric injection with olanzapine). Compared with control group, *P<0.05,**P<0.01.
Figure 2 Transcriptomic analysis of differentially expressed genes after olanzapine administration (Volcano map and GO analysis)Note:A, Volcano map of differentially-expressed genes (logarithmic form of screening condition values were taken for the X and Y axes. Each point in the figure represents a differentially expressed gene. Orange, blue and gray indicate the up-regulated, down-regulated and unchanged genes, respectively). B, GO analysis of differentially expressed genes (differentially-expressed genes-involved molecular functions, cellular environments and biological processes). C, GO-net analysis of differentially expressed genes.
Figure 3 Transcriptomic analysis of differentially expressed genes after olanzapine administration (KEEG analysis and PPI network analysis)Note:A, KEEG analysis of differentially expressed genes (different colors represent different path groups or network clusters). B, protein-protein interaction (PPI) network analysis (each connection point is labeled with the name of the proteins. Blue indicates the down-regulated genes, and red shows the up-regulated gene. The larger the dot, the more connections there are. The black line represents the regulatory effect between the two genes).
Figure 4 Real-time quantitative fluorescence RCR verification results of differentially expressed genes in the whole brain tissues of mice in the olanzapine infusion group and control groupNote:Ctrl, control group (intragastric injection with saline); Olz, olanzapine group (intragastric injection with olanzapine). n= 10 in each group. Compared with the control group, *P<0.05, **P<0.01.
基因 | 奥氮平给药的影响 | 可能的效应 |
---|---|---|
Oxt | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Trpv1 | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Adipoq | ↓ | 脂类合成增加、降解减少 |
Phox2b | ↓ | 产热减少 |
Abcg5 | ↓ | 脂类吸收增加 |
Mogat2 | ↓ | 脂肪吸收的延迟 |
Dbh | ↓ | 产热减少 |
Plac8 | ↑ | 产热增加 |
Neurog1 | ↑ | 未知 |
Table 2 Differential genes changes inced by olanzapine and possible metabolic effects
基因 | 奥氮平给药的影响 | 可能的效应 |
---|---|---|
Oxt | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Trpv1 | ↓ | 胃肠道厌食信号减少,享乐性进食增加,产热减少 |
Adipoq | ↓ | 脂类合成增加、降解减少 |
Phox2b | ↓ | 产热减少 |
Abcg5 | ↓ | 脂类吸收增加 |
Mogat2 | ↓ | 脂肪吸收的延迟 |
Dbh | ↓ | 产热减少 |
Plac8 | ↑ | 产热增加 |
Neurog1 | ↑ | 未知 |
1 | CARLI M, KOLACHALAM S, LONGONI B, et al. Atypical antipsychotics and metabolic syndrome: from molecular mechanisms to clinical differences[J]. Pharmaceuticals, 2021, 14(3):238. DOI: 10.3390/ph14030238 . |
2 | LORD C C, WYLER S C, WAN R, et al. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C[J]. J Clin Invest, 2017, 127(9):3402-3406. DOI: 10.1172/JCI93362 . |
3 | ANDERMANN M L, LOWELL B B. Toward a wiring diagram understanding of appetite control[J]. Neuron, 2017, 95(4):757-778. DOI: 10.1016/j.neuron.2017.06.014 . |
4 | STIP E, LUNGU O V, ANSELMO K, et al. Neural changes associated with appetite information processing in schizophrenic patients after 16 weeks of olanzapine treatment[J]. Transl Psychiatry, 2012, 2(6): e128. DOI: 10.1038/tp.2012.53 . |
5 | KEREM L, LAWSON E A. The effects of oxytocin on appetite regulation, food intake and metabolism in humans[J]. Int J Mol Sci, 2021, 22(14):7737. DOI: 10.3390/ijms22147737 . |
6 | LAWSON E A, OLSZEWSKI P K, WELLER A, et al. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis[J]. J Neuroendocrinol, 2020, 32(4): e12805. DOI: 10.1111/jne.12805 . |
7 | PLATZER M, FELLENDORF F T, BENGESSER S A, et al. The relationship between food craving, appetite-related hormones and clinical parameters in bipolar disorder[J]. Nutrients, 2020, 13(1):76. DOI: 10.3390/nu13010076 . |
8 | MATHEWS J, NEWCOMER J W, MATHEWS J R, et al. Neural correlates of weight gain with olanzapine[J]. Arch Gen Psychiatry, 2012, 69(12):1226. DOI: 10.1001/archgenpsychiatry. 2012.934 . |
9 | BENÍTEZ-ANGELES M, MORALES-LÁZARO S L, JUÁREZ-GONZÁLEZ E, et al. TRPV1: structure, endogenous agonists, and mechanisms[J]. Int J Mol Sci, 2020, 21(10):3421. DOI: 10.3390/ijms21103421 . |
10 | KOMARNYTSKY S, RATHINASABAPATHY T, WAGNER C, et al. Endocannabinoid system and its regulation by polyunsaturated fatty acids and full spectrum hemp oils[J]. Int J Mol Sci, 2021, 22(11):5479. DOI: 10.3390/ijms22115479 . |
11 | POTVIN S, LUNGU O V, STIP E. Anandamide is involved in appetite-related amygdala hyperactivations in schizophrenia patients treated with olanzapine: a functional magnetic resonance imaging study[J]. J Clin Psychopharmacol, 2015, 35(1):82-83. DOI: 10.1097/JCP.0000000000000236 . |
12 | DERBENEV A V, ZSOMBOK A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity[J]. Semin Immunopathol, 2016, 38(3):397-406. DOI: 10.1007/s00281-015-0529-x . |
13 | BENARROCH L, KOWALCHUK C, WILSON V, et al. Atypical antipsychotics and effects on feeding: from mice to men[J]. Psychopharmacology, 2016, 233(14):2629-2653. DOI: 10.1007/s00213-016-4324-8 . |
14 | 刘玉芝, 徐乐平, 袁娇, 等. 奥氮平对精神分裂症患者胃动力学的影响[J]. 中国健康心理学杂志, 2013, 21(8): 1149-1151. DOI: 10.3969/j.issn.1005-4847.2010.05.014 . |
LIU Y Z, XU L P, YUAN J, et al. The influence of olanzapine in the treatment of schizophrenic patients on the gastric motility[J]. China J Health Psychol, 2013, 21(8): 1149-1151. DOI: 10.3969/j.issn.1005-4847.2010.05.014 . | |
15 | FANG H, JUDD R L. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3): 1031-1063. DOI: 10.1002/cphy.c170046 . |
16 | RAMANANTSOA N, MATROT B, VARDON G, et al. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn phox2b heterozygous knock-out mice[J]. Front Physiol, 2011, 2:61. DOI: 10.3389/fphys.2011.00061 . |
17 | THOMAS S A, PALMITER R D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline[J]. Nature, 1997, 387(6628):94-97. DOI: 10.1038/387094a0 . |
18 | JIMENEZ-PREITNER M, BERNEY X, THORENS B. Plac8 is required for white adipocyte differentiation in vitro and cell number control in vivo[J]. PLoS One, 2012, 7(11): e48767. DOI: 10.1371/journal.pone.0048767 . |
19 | VANMIERLO T, RUTTEN K, VAN VARK- VAN DER ZEE L C, et al. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice[J]. Plant Foods Hum Nutr, 2011, 66(2):149-156. DOI: 10.1007/s11130-011-0219-3 . |
20 | NELSON D W, GAO Y, YEN M I, et al. Intestine-specific deletion of acyl-CoA: monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance[J]. J Biol Chem, 2014, 289(25):17338-17349. DOI: 10.1074/jbc.M114.555961 . |
21 | ELLIOTT K L, PAVLÍNKOVÁ G, CHIZHIKOV V V, et al. Development in the mammalian auditory system depends on transcription factors[J]. Int J Mol Sci, 2021, 22(8):4189. DOI: 10.3390/ijms22084189 . |
22 | Aggleton JP, Brown MW, Albasser MM. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging [J]. Neuropsychologia, 2012;50(13):3141-3155. DOI: 10.1016/j.neuropsychologia.2012.05.018 . |
23 | GALLO F T, KATCHE C, MORICI J F, et al. Immediate early genes, memory and psychiatric disorders: focus on c-fos, Egr1 and arc[J]. Front Behav Neurosci, 2018, 12:79. DOI: 10.3389/fnbeh.2018.00079 . |
[1] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
[2] | KONG Zhihao, WEI Xiaofeng, YU Lingzhi, FENG Liping, ZHU Qi, SHI Guojun, WANG Chen. Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 368-375. |
[3] | XU Qiuyu, YAN Guofeng, FU Li, FAN Wenhua, ZHOU Jing, ZHU Lian, QIU Shuwen, ZHANG Jie, WU Ling. A Mouse Model of Polycystic Ovary Syndrome Established Through Subcutaneous Administration of Letrozole Sustained-Release Pellets and Hepatic Transcriptome Analysis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 119-129. |
[4] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
[5] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
[6] | ZHANG Nan, LI Huaiyin, LIAN Xiaodi, WEI Juanpeng, GAO Ming. Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 73-78. |
[7] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[8] | TAN He, YANG Xiaohui, ZHANG Daxiu, WANG Guicheng. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. |
[9] | MENG Yu, LIANG Dongli, ZHENG Linlin, ZHOU Yuanyuan, WANG Zhaoxia. Optimization and Evaluation of Conditions for Orthotopic Nude Mouse Models of Human Liver Tumor Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 511-522. |
[10] | Jing QIN, Yong ZHAO, Caiqin ZHANG, Bing BAI, Changhong SHI. Construction and Evaluation of Theranostic Near-infrared Fluorescent Probe for Targeting Inflammatory Brain Edema [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 243-250. |
[11] | Yisu ZHANG, Xinru LIU, Ruojie WU, Rui LIU, Hong OUYANG, Xiaohong LI. Establishment and Evaluation of Mouse Model of Pregnancy Pain-depression Comorbidity Induced by Chronic Unpredictable Stress, Complete Freund's Adjuvant and Formalin [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 259-269. |
[12] | Dong WU, Rui SHI, Peishan LUO, Ling'en LI, Xijing SHENG, Mengyang WANG, Lu NI, Sujuan WANG, Huixin YANG, Jing ZHAO. Effects of Different Pellet Feed Hardness on Growth and Reproduction, Feed Utilization Rate, and Environmental Dust in Laboratory Mice [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 313-320. |
[13] | Yun LIU, Tingting FENG, Wei TONG, Zhi GUO, Xia LI, Qi KONG, Zhiguang XIANG. Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 251-258. |
[14] | Jinhua HU, Jingjie HAN, Min JIN, Bin HU, Yuefen LOU. Effects of Puerarin on Bone Density in Rats and Mice: A Meta-analysis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 149-161. |
[15] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||