Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (3): 255-261.DOI: 10.12300/j.issn.1674-5817.2021.133
• Comparative Biomedicine • Previous Articles Next Articles
Received:2021-08-13
Revised:2021-12-16
Online:2022-06-25
Published:2022-06-25
Contact:
Hui LI
CLC Number:
Hui LI. A Comparative Biological Study of Language[J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. DOI: 10.12300/j.issn.1674-5817.2021.133.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.133
| 英文缩略词 | 英文全称 | 中文全称(备注) |
|---|---|---|
| WHO | World Health Organization | 世界卫生组织 |
| FDA | Food and Drug Administration | 食品药品监督管理局(美国) |
| SPF | specific pathogen-free | 无特定病原体 |
| PCR | polymerase chain reaction | 聚合酶链式反应 |
| CT | computerized tomography | 计算机体层摄影 |
| ELISA | enzyme-linked immunosorbent assay | 酶联免疫吸附测定 |
| CCK-8 | cell counting kit-8 | 细胞计数试剂盒-8 |
| MTT | thiazolyl blue | 噻唑蓝(细胞增殖活性检测试剂) |
| BCA | bicinchonininc acid | 二辛可宁酸(蛋白浓度测定试剂) |
| PAGE | polyacrylamide gel electrophoresis | 聚丙烯酰胺凝胶电泳 |
| SDS | sodium dodecyl sulfate | 十二烷基硫酸钠 |
| DMSO | dimethyl sulfoxide | 二甲基亚砜 |
| EDTA | ethylenediamine tetraacetic acid | 乙二胺四乙酸 |
| SP | streptavidin-perosidase | 链霉抗生物素蛋白-过氧化物酶 |
| HE | hematoxylin and eosin | 苏木精-伊红 |
| DAB | 3,3’-diaminobenzidine | 二氨基联苯胺 |
| ddH2O | distillation-distillation H2O | 双蒸水 |
| PBS | phosphate-buffered saline | 磷酸盐缓冲溶液 |
| DPBS | Dulbecco’s phosphate-buffered saline | 杜氏磷酸盐缓冲液 |
| PBST | phosphate-buffered saline with Tween-20 | 含Tween-20的磷酸盐缓冲液 |
| TBST | Tris-buffered saline with Tween-20 | 含Tween-20的Tris盐酸缓冲液 |
| DEPC | diethyl pyrocarbonate | 焦碳酸二乙酯 |
| DAPI | 4’,6-diamidino-2-phenylindole | 4’,6-二脒基-2-苯基吲哚 |
| FITC | fluorescein insothiocyanate | 异硫氰酸荧光素 |
| PE | phycoerythrin | 藻红蛋白 |
| PVDF | polyvinylidene difluoride | 聚偏二氟乙烯 |
| RIPA | radio immunoprecipitation assay | 放射免疫沉淀法 |
| FBS | fetal bovine serum | 胎牛血清 |
| BSA | bovine serum albumin | 牛血清白蛋白 |
| PI | propidium iodide | 碘化丙啶 |
| Bcl-2 | B-cell lymphoma-2 | B淋巴细胞瘤-2基因 |
| GAPDH | glyceraldehyde-3-phosphate dehydrogenase | 甘油醛-3-磷酸脱氢酶(内参) |
| Ras | rat sarcoma gene | 大鼠肉瘤基因 |
| DNA | deoxyribonucleic acid | 脱氧核糖核酸 |
| RNA | ribonucleic acid | 核糖核酸 |
| cDNA | complementary DNA | 互补(反向转录)DNA |
| siRNA | small interfering RNA | 小干扰RNA |
| miRNA | microRNA | 微RNA |
| 英文缩略词 | 英文全称 | 中文全称(备注) |
|---|---|---|
| WHO | World Health Organization | 世界卫生组织 |
| FDA | Food and Drug Administration | 食品药品监督管理局(美国) |
| SPF | specific pathogen-free | 无特定病原体 |
| PCR | polymerase chain reaction | 聚合酶链式反应 |
| CT | computerized tomography | 计算机体层摄影 |
| ELISA | enzyme-linked immunosorbent assay | 酶联免疫吸附测定 |
| CCK-8 | cell counting kit-8 | 细胞计数试剂盒-8 |
| MTT | thiazolyl blue | 噻唑蓝(细胞增殖活性检测试剂) |
| BCA | bicinchonininc acid | 二辛可宁酸(蛋白浓度测定试剂) |
| PAGE | polyacrylamide gel electrophoresis | 聚丙烯酰胺凝胶电泳 |
| SDS | sodium dodecyl sulfate | 十二烷基硫酸钠 |
| DMSO | dimethyl sulfoxide | 二甲基亚砜 |
| EDTA | ethylenediamine tetraacetic acid | 乙二胺四乙酸 |
| SP | streptavidin-perosidase | 链霉抗生物素蛋白-过氧化物酶 |
| HE | hematoxylin and eosin | 苏木精-伊红 |
| DAB | 3,3’-diaminobenzidine | 二氨基联苯胺 |
| ddH2O | distillation-distillation H2O | 双蒸水 |
| PBS | phosphate-buffered saline | 磷酸盐缓冲溶液 |
| DPBS | Dulbecco’s phosphate-buffered saline | 杜氏磷酸盐缓冲液 |
| PBST | phosphate-buffered saline with Tween-20 | 含Tween-20的磷酸盐缓冲液 |
| TBST | Tris-buffered saline with Tween-20 | 含Tween-20的Tris盐酸缓冲液 |
| DEPC | diethyl pyrocarbonate | 焦碳酸二乙酯 |
| DAPI | 4’,6-diamidino-2-phenylindole | 4’,6-二脒基-2-苯基吲哚 |
| FITC | fluorescein insothiocyanate | 异硫氰酸荧光素 |
| PE | phycoerythrin | 藻红蛋白 |
| PVDF | polyvinylidene difluoride | 聚偏二氟乙烯 |
| RIPA | radio immunoprecipitation assay | 放射免疫沉淀法 |
| FBS | fetal bovine serum | 胎牛血清 |
| BSA | bovine serum albumin | 牛血清白蛋白 |
| PI | propidium iodide | 碘化丙啶 |
| Bcl-2 | B-cell lymphoma-2 | B淋巴细胞瘤-2基因 |
| GAPDH | glyceraldehyde-3-phosphate dehydrogenase | 甘油醛-3-磷酸脱氢酶(内参) |
| Ras | rat sarcoma gene | 大鼠肉瘤基因 |
| DNA | deoxyribonucleic acid | 脱氧核糖核酸 |
| RNA | ribonucleic acid | 核糖核酸 |
| cDNA | complementary DNA | 互补(反向转录)DNA |
| siRNA | small interfering RNA | 小干扰RNA |
| miRNA | microRNA | 微RNA |
| 1 | CO M, ANDERSON A G, KONOPKA G. FOXP transcription factors in vertebrate brain development, function, and disorders[J]. Wiley Interdiscip Rev Dev Biol, 2020, 9(5): e375. DOI:10.1002/wdev.375 . |
| 2 | LIEBERMAN P. The antiquity and evolution of the neural bases of rhythmic activity[J]. Ann N Y Acad Sci, 2019, 1453(1):114-124. DOI:10.1111/nyas.14199 . |
| 3 | NEWBURY D F, WINCHESTER L, ADDIS L, et al. CMIP and ATP2C2 modulate phonological short-term memory in language impairment[J]. Am J Hum Genet, 2009, 85(2):264-272. DOI:10.1016/j.ajhg.2009.07.004 . |
| 4 | POOT M. Connecting the CNTNAP2 networks with neuro-developmental disorders[J]. Mol Syndromol, 2015, 6(1):7-22. DOI:10.1159/000371594 . |
| 5 | SANFILIPPO J, NESS M, PETSCHER Y, et al. Reintroducing dyslexia: early identification and implications for pediatric practice[J]. Pediatrics, 2020, 146(1): e20193046. DOI:10.1542/peds.2019-3046 . |
| 6 | GRAHAM S A, DERIZIOTIS P, FISHER S E. Insights into the genetic foundations of human communication[J]. Neuro-psychol Rev, 2015, 25(1):3-26. DOI:10.1007/s11065-014-9277-2 . |
| 7 | CHRISTOPHER M E, HULSLANDER J, BYRNE B, et al. Modeling the etiology of individual differences in early reading development: evidence for strong genetic influences[J]. Sci Stud Read, 2013, 17(5):350-368. DOI:10.1080/10888438. 2012.729119 . |
| 8 | FRENCH C A, FISHER S E. What can mice tell us about Foxp2 function?[J]. Curr Opin Neurobiol, 2014, 28:72-79. DOI:10.1016/j.conb.2014.07.003 . |
| 9 | FRIEDMAN L, STERLING A. A review of language, executive function, and intervention in autism spectrum disorder[J]. Semin Speech Lang, 2019, 40(4):291-304. DOI:10.1055/s-0039-1692964 . |
| 10 | KONOPKA G, ROBERTS T F. Animal models of speech and vocal communication deficits associated with psychiatric disorders[J]. Biol Psychiatry, 2016, 79(1):53-61. DOI:10.1016/j.biopsych.2015.07.001 . |
| 11 | ORNOY A, WEINSTEIN-FUDIM L, ERGAZ Z. Prevention or amelioration of autism-like symptoms in animal models: will it bring us closer to treating human ASD?[J]. Int J Mol Sci, 2019, 20(5):1074. DOI:10.3390/ijms20051074 . |
| 12 | KONG Y, ZHOU W, SUN Z. Nuclear receptor corepressors in intellectual disability and autism[J]. Mol Psychiatry, 2020, 25(10):2220-2236. DOI:10.1038/s41380-020-0667-y . |
| 13 | CHADMAN K K, FERNANDES S, DILIBERTO E, et al. Do animal models hold value in Autism spectrum disorder (ASD) drug discovery?[J]. Expert Opin Drug Discov, 2019, 14(8):727-734. DOI:10.1080/17460441.2019.1621285 . |
| 14 | PINKER S, BLOOM P. Natural language and natural selection[J]. Behav Brain Sci, 1990, 13(4):707-727. DOI:10.1017/s0140525x00081061 . |
| 15 | CHOMSKY N. Some simple evo Devo theses: how true might they be for language?[M]//LARSON R K, DEPREZ V, YAMAKIDO H. eds. The Evolution of Human Language. Cambridge: Cambridge University Press, 2010 :45-62. DOI:10.1017/cbo9780511817755.003 . |
| 16 | DAN D D, LEVINSON S C. On the antiquity of language: the reinterpretation of Neandertal linguistic capacities and its consequences[J]. Front Psychol, 2013, 4:397. DOI:10.3389/fpsyg.2013.00397 . |
| 17 | MARTINS P T, BOECKX C. Vocal learning: Beyond the continuum[J]. PLoS Biol, 2020, 18(3): e3000672. DOI:10.1371/journal.pbio.3000672 . |
| 18 | O'ROURKE T, MARTINS P T, ASANO R, et al. Capturing the effects of domestication on vocal learning complexity[J]. Trends Cogn Sci, 2021, 25(6):462-474. DOI:10.1016/j.tics. 2021. 03.007 . |
| 19 | TYACK P L. A taxonomy for vocal learning[J]. Philos Trans R Soc Lond B Biol Sci, 2020, 375(1789):20180406. DOI:10.1098/rstb.2018.0406 . |
| 20 | MARTINS P T, BOECKX C. Vocal learning: Beyond the continuum[J]. PLoS Biol, 2020, 18(3):e3000672. |
| 21 | FISHER S E, VERNES S C. Genetics and the language sciences[J]. Annu Rev Linguist, 2015, 1(1):289-310. DOI:10.1146/annurev-linguist-030514-125024 . |
| 22 | POBLETE G F, GOSNELL S N, MEYER M, et al. Process genes list: an approach to link genetics and human brain imaging[J]. J Neurosci Methods, 2020, 339:108695. DOI:10.1016/j.jneumeth.2020.108695 . |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [3] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [4] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| [5] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
| [6] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
| [7] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
| [8] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
| [9] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
| [10] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
| [11] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
| [12] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
| [13] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
| [14] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
| [15] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

