Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (3): 248-254.DOI: 10.12300/j.issn.1674-5817.2021.159
• Comparative Biomedicine • Previous Articles Next Articles
Miaomiao GONG1,2()(
), Ligui ZHOU3, Jumei ZHAO1(
)(
), Changhong SHI2(
)(
)
Received:
2021-10-14
Revised:
2022-01-12
Online:
2022-06-25
Published:
2022-07-01
Contact:
Jumei ZHAO, Changhong SHI
CLC Number:
Miaomiao GONG, Ligui ZHOU, Jumei ZHAO, Changhong SHI. Application of Gastric Cancer Organoids in Precision Medicine Research[J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 248-254.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.159
特点 Characteristic | CL | CDX | PDX | GEMM | PDO |
---|---|---|---|---|---|
周期 Period | +++ | ++ | ++ | + | +++ |
基因编辑 Genome editing | +++ | +++ | - | +++ | +++ |
高通量筛选 High throughput screening | +++ | - | - | - | +++ |
价格 Price | +++ | ++ | ++ | + | ++ |
临床相关性 Clinical interrelation | - | ++ | +++ | ++ | +++ |
肿瘤微环境 Tumor microenvironment | - | ++ | ++ | +++ | + |
个性化治疗 Individualized treatment | - | + | ++ | + | +++ |
Table 1 Comparison of different models of gastric cancer
特点 Characteristic | CL | CDX | PDX | GEMM | PDO |
---|---|---|---|---|---|
周期 Period | +++ | ++ | ++ | + | +++ |
基因编辑 Genome editing | +++ | +++ | - | +++ | +++ |
高通量筛选 High throughput screening | +++ | - | - | - | +++ |
价格 Price | +++ | ++ | ++ | + | ++ |
临床相关性 Clinical interrelation | - | ++ | +++ | ++ | +++ |
肿瘤微环境 Tumor microenvironment | - | ++ | ++ | +++ | + |
个性化治疗 Individualized treatment | - | + | ++ | + | +++ |
1 | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clin, 2018, 68(6):394-424. DOI:10.3322/caac.21492 . |
2 | HE Y, WANG Y, LUAN F, et al. Chinese and global burdens of gastric cancer from 1990 to 2019[J]. Cancer Med, 2021, 10(10):3461-3473. DOI:10.1002/cam4.3892 . |
3 | KERSTEN K, DE VISSER K E, VAN MILTENBURG M H, et al. Genetically engineered mouse models in oncology research and cancer medicine[J]. EMBO Mol Med, 2017, 9(2):137-153. DOI:10.15252/emmm.201606857 . |
4 | KIM J, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10):571-584. DOI:10.1038/s41580-020-0259-3 . |
5 | RISBRIDGER G P, LAWRENCE M G, TAYLOR R A. PDX: moving beyond drug screening to versatile models for research discovery[J]. J Endocr Soc, 2020, 4(11): bvaa132. DOI:10.1210/jendso/bvaa132 . |
6 | CORRÒ C, NOVELLASDEMUNT L, LI V S W. A brief history of organoids[J]. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165. DOI:10.1152/ajpcell.00120.2020 . |
7 | KAMB A. What's wrong with our cancer models?[J]. Nat Rev Drug Discov, 2005, 4(2):161-165. DOI:10.1038/nrd1635 . |
8 | CAPONIGRO G, SELLERS W R. Advances in the preclinical testing of cancer therapeutic hypotheses[J]. Nat Rev Drug Discov, 2011, 10(3):179-187. DOI:10.1038/nrd3385 . |
9 | VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. DOI:10.1126/science.aao2774 . |
10 | SEIDLITZ T, MERKER S R, ROTHE A, et al. Human gastric cancer modelling using organoids[J]. Gut, 2019, 68(2):207-217. DOI:10.1136/gutjnl-2017-314549 . |
11 | JABS J, ZICKGRAF F M, PARK J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11):955. DOI:10.15252/msb.20177697 . |
12 | ABBASI J. Patient-derived organoids predict cancer treatment response[J]. JAMA, 2018, 319(14):1427. DOI:10.1001/jama.2018.3760 . |
13 | STEELE N G, CHAKRABARTI J, WANG J, et al. An organoid-based preclinical model of human gastric cancer[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(1):161-184. DOI:10.1016/j.jcmgh.2018.09.008 . |
14 | BARKER N, HUCH M, KUJALA P, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro [J]. Cell Stem Cell, 2010, 6(1):25-36. DOI:10.1016/j.stem.2009.11.013 . |
15 | YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e11. DOI:10.1016/j.stem. 2018.09.016 . |
16 | NANKI K, TOSHIMITSU K, TAKANO A, et al. Divergent routes toward wnt and R-spondin niche independency during human gastric carcinogenesis[J]. Cell, 2018, 174(4):856-869.e17. DOI:10.1016/j.cell.2018.07.027 . |
17 | GAO M, LIN M, RAO M, et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues[J]. Ann Surg Oncol, 2018, 25(9):2767-2775. DOI:10.1245/s10434-018-6662-8 . |
18 | UKAI S, HONMA R, SAKAMOTO N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell[J]. Oncogene, 2020, 39(50):7265-7278. DOI:10.1038/s41388-020-01492-9 . |
19 | HOLOKAI L, CHAKRABARTI J, BRODA T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection[J]. PLoS Pathog, 2019, 15(1): e1007468. DOI:10.1371/journal.ppat.1007468 . |
20 | STANGE D E, KOO B K, HUCH M, et al. Differentiated Troy+chief cells act as reserve stem cells to generate all lineages of the stomach epithelium[J]. Cell, 2013, 155(2):357-368. DOI:10.1016/j.cell.2013.09.008 . |
21 | XIAO X, CHEN W, WEI Z W, et al. The anti-tumor effect of nab-paclitaxel proven by patient-derived organoids[J]. Onco Targets Ther, 2020, 13:6017-6025. DOI:10.2147/ott.s237431 . |
22 | LI J, XU H, ZHANG L, et al. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening[J]. J Cancer Res Clin Oncol, 2019, 145(11):2637-2647. DOI:10.1007/s00432-019-03004-z . |
23 | LAUREN P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification[J]. Acta Pathol Microbiol Scand, 1965, 64:31-49. DOI:10.1111/apm.1965.64.1.31 . |
24 | BOSMAN F T, CARNEIRO F, HRUBAN R H, et al. WHO classification of tumours of the digestive system[M]. Lyon, France: International Agency for Research on Cancer Press, 2010. |
25 | CANCER GENOME ATLAS RESEARCH NETWORK. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature, 2014, 513(7517):202-209. DOI:10.1038/nature13480 . |
26 | WANG K, YUEN S T, XU J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer[J]. Nat Genet, 2014, 46(6):573-582. DOI:10.1038/ng.2983 . |
27 | LO Y H, KOLAHI K, DU Y, et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and non-essential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6):1562-1581. DOI: 10.1158/2159-8290.CD-20-1109 . |
28 | WANG Y, KIM R, GUNASEKARA D B, et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(2):113-130. DOI:10.1016/j.jcmgh.2017.10.007 . |
29 | WANG X, YAMAMOTO Y, WILSON L H, et al. Cloning and variation of ground state intestinal stem cells[J]. Nature, 2015, 522(7555):173-178. DOI:10.1038/nature14484 . |
30 | NAKAGAWA H, FUJITA M. Whole genome sequencing analysis for cancer genomics and precision medicine[J]. Cancer Sci, 2018, 109(3):513-522. DOI:10.1111/cas.13505 . |
31 | BARTFELD S, BAYRAM T, VAN DE WETERING M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology, 2015, 148(1):126-136.e6. DOI:10.1053/j.gastro.2014.09.042 . |
32 | NADAULD L D, GARCIA S, NATSOULIS G, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2as a cancer driver in diffuse gastric cancer[J]. Genome Biol, 2014, 15(8):1-18. DOI:10.1186/s13059-014-0428-9 . |
33 | GRAHAM D Y. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits[J]. Gastroenterology, 2015, 148(4):719-31.e3. DOI:10.1053/j.gastro.2015.01.040 . |
34 | BURKITT M D, DUCKWORTH C A, WILLIAMS J M, et al. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models[J]. Dis Model Mech, 2017, 10(2):89-104. DOI:10.1242/dmm.027649 . |
35 | ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3):579-596. DOI:10.1084/jem.20162024 . |
36 | SCHLAERMANN P, TOELLE B, BERGER H, et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro [J]. Gut, 2016, 65(2):202-213. DOI:10.1136/gutjnl-2014-307949 . |
37 | SCANU T, SPAAPEN R M, BAKKER J M, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma[J]. Cell Host Microbe, 2015, 17(6):763-774. DOI:10.1016/j.chom. 2015. 05.002 . |
38 | MCCRACKEN K W, CATÁ E M, CRAWFORD C M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516(7531):400-404. DOI:10.1038/nature13863 . |
39 | SCHUMACHER M A, FENG R, AIHARA E, et al. Helicobacter pylori-induced sonic hedgehog expression is regulated by NFκB pathway activation: the use of a novel in vitro model to study epithelial response to infection[J]. Helicobacter, 2015, 20(1):19-28. DOI:10.1111/hel.12152 . |
40 | WEEBER F, OOFT S N, DIJKSTRA K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery[J]. Cell Chem Biol, 2017, 24(9):1092-1100. DOI:10.1016/j.chembiol. 2017.06.012 . |
41 | FRANCIES H E, BARTHORPE A, MCLAREN-DOUGLAS A, et al. Drug sensitivity assays of human cancer organoid cultures[J]. Methods Mol Biol, 2019, 1576:339-351. DOI:10.1007/7651_2016_10 . |
42 | ABERLE M R, BURKHART R A, TIRIAC H, et al. Patient-derived organoid models help define personalized management of gastrointestinal cancer[J]. Br J Surg, 2018, 105(2):e48-e60. DOI:10.1002/bjs.10726 . |
43 | DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. DOI:10.1038/s41568-018-0007-6 . |
44 | HAAG G M. OPPOSITE: Outcome prediction of systemic treatment in esophagogastric carcinoma (OPPOSITE)[EB/OL]. [2019-02-18]. . |
45 | WALLASCHEK N, REUTER S, SILKENAT S, et al. Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids[J]. PLoS Pathog, 2021, 17(2): e1009210. DOI:10.1371/journal.ppat.1009210 . |
[1] | Yinghan WAN, Yexin GU, Yunong YUAN, Min TANG, Li LU. Implications on the Development of Animal Disease Models from FDA Modernization Act 2.0 [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 472-481. |
[2] | SONG Weijie, ZHOU Yan, NIU Ruifang. Application of Laboratory Animal Models in Cancer Precision Medicine Research [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 493-500. |
[3] | ZHAO Guoping. Development Trend and Challenge of Comparative Medicine from Human Genome Project to Precision Medicine [J]. Laboratory Animal and Comparative Medicine, 2021, 41(1): 1-8. |
[4] | LUO Baohua, ZHANG Yongbin, LIU Xiaoqiu, SHI Changhong. Establishment and Applications of Tumor Organoid Models [J]. Laboratory Animal and Comparative Medicine, 2020, 40(6): 540-546. |
[5] | GE Xiao-mei, ZHANG Yi-xin, XIE Fu-bo, LIU Ji-bin, YANG Lei, QU Ying-ying, GU Ying, Li Xue-ting, YANG Wei-min, LIU Xi-peng, ZHOU He, QIANG Fu-lin. Establishment and Characterization of Patient Derived Gastric Cancer Cell Lines [J]. Laboratory Animal and Comparative Medicine, 2017, 37(4): 257-265. |
[6] | CHU Fang, LI Yu-yun, FEI Jian, LI Yan-shu. Effect of Extractive from Glaucescent Fissistigma Root on Inhibiting Human Gastric Cancer and Ovarian Cancer in Nude Mice [J]. Laboratory Animal and Comparative Medicine, 2015, 35(1): 23-26. |
[7] | XU Chun-hua, YANG Lei, TANG Xu-zhen, HU Gang, GENG Qin, OU YANG Ke-dong, XIE Fu-bo, WANG Ke, QIN Xiao-ran, LIU Ji-bin, YANG Wei-min, TAO Wei-kang, ZHANG Yi-xin, ZHOU He. Initially Establishment and Characterization of Patient Derived Gastric Cancer Xenograft Models [J]. Laboratory Animal and Comparative Medicine, 2014, 34(4): 259-265. |
[8] | PENG Xiu-Hua, SHEN Yan, XU Chun-Hua, YANG Yu-Qin, ZHOU Wen-Jiang. Dynamic Observation On Growth of Subcutaneous and Orthotopic Gastric Tumor by in vivo Fluorescence Imager [J]. Laboratory Animal and Comparative Medicine, 2011, 31(5): 371-375. |
[9] | WANG Si-feng, WANG Xi-mm,HOU Hai-rong, LIU Ke-chun, HAN Li-wen, CHEN Xi-qiang, WANG Xue. Selection of Organic Cosolvents in Experiment with Zebrafish [J]. , 2008, 28(4): 238-242. |
[10] | CHEN Yu-Qiang, CHEN Fu, CHEN Zheng-Ming, WU Qiao, SU Wen-Jin. Effects of All-trans Retinoic Acid Treatment of Gastric Cancer Cells in Vitro on Their Growth in Nude Mouse Xenografts [J]. , 1998, 18(2): 81-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||