Laboratory Animal and Comparative Medicine ›› 2021, Vol. 41 ›› Issue (6): 547-553.DOI: 10.12300/j.issn.1674-5817.2021.019
• Technology and Method • Previous Articles Next Articles
YU Lingzhi, TAO Lingyun, WEI Xiaofeng
Received:2021-01-20
Revised:2021-05-06
Online:2021-12-25
Published:2021-12-25
Contact:
WEI Xiaofeng, E-mail: wei.xf@outlook.com
CLC Number:
YU Lingzhi,TAO Lingyun,WEI Xiaofeng. Research and Application Progress in Visualized RPA-LFD Nucleic Acid Detection Technology[J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 547-553. DOI: 10.12300/j.issn.1674-5817.2021.019.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.019
| [1] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al.DNA detection using recombination proteins[J]. PLoS Biol, 2006, 4(7):e204. DOI:10.1371/journal.pbio.0040204. [2] 孙魁. 基于LFD-RPA的核酸可视化检测技术的建立及应用[D]. 北京: 解放军军事医学科学院, 2017. [3] 杨洋. 五种重要动物病毒快速恒温扩增检测技术的建立与应用[D]. 北京: 中国农业科学院, 2017. [4] 樊晓旭, 宋翥远, 赵永刚, 等. 塞尼卡谷病毒重组酶聚合酶扩增-侧流层析试纸条检测方法的建立[J]. 中国预防兽医学报, 2018, 40(5):406-410. DOI:10.3969/j.issn.1008-0589.201708027. [5] SUN K, XING W W, YU X L, et al.Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of [6] JAMES A, MACDONALD J.Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics[J]. Expert Rev Mol Diagn, 2015, 15(11):1475-1489. DOI:10.1586/14737159.2015.1090877. [7] LAU Y L, ISMAIL I B, MUSTAPA N I B, et al. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)[J]. PLoS One, 2021, 16(1):e0245164. DOI:10.1371/journal.pone.0245164. [8] XIONG Y F, LUO Y S, LI H, et al.Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay[J]. Int J Infect Dis, 2020, 95:406-412. DOI:10.1016/j.ijid.2020.03.075. [9] XI Y, XU C Z, XIE Z Z, et al.Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick[J]. Mol Cell Probes, 2019, 46:101413. DOI:10.1016/j.mcp.2019.06.003. [10] GAO X, LIU X S, ZHANG Y G, et al.Rapid and visual detection of porcine [11] SUN N, WANG Y, YAO X, et al.Visual signal generation for the detection of influenza viruses by duplex recombinase polymerase amplification with lateral flow dipsticks[J]. Anal Bioanal Chem, 2019, 411(16):3591-3602. DOI:10.1007/s00216-019-01840-z. [12] XIE J, YANG X H, DUAN L, et al.One-step reverse-transcription recombinase polymerase amplification using lateral flow strips for the detection of coxsackievirus A6[J]. Front Microbiol, 2021, 12:629533. DOI:10.3389/fmicb.2021.629533. [13] ZHAI Y, MA P, FU X, et al.A recombinase polymerase amplification combined with lateral flow dipstick for rapid and specific detection of African swine fever virus[J]. J Virol Methods, 2020, 285:113885. DOI:10.1016/j.jviromet.2020.113885. [14] 马国和, 高冬生, 王增, 等. 鸡传染性喉气管炎病毒RPA-LFD检测方法的建立[J]. 中国预防兽医学报, 2018, 40(12):1128-1132. DOI:10.3969/j.issn.1008-0589.201802034. [15] 孙魁, 邢微微, 徐东刚, 等. 基于重组酶聚合酶扩增结合侧流层析技术的B、E型腺病毒快速可视化检测方法的研究与评价[J]. 军事医学, 2017, 41(7):547-551. DOI:10.7644/j.issn.1674-9960.2017.07.001. [16] 刘志香. 新城疫病毒新型可视化RPA-LFD检测方法建立与初步应用[D]. 广州: 华南农业大学, 2018. [17] WANG Z, YANG P P, ZHANG Y H, et al.Development of a reverse transcription recombinase polymerase amplification combined with lateral-flow dipstick assay for avian influenza H9N2 HA gene detection[J]. Transbound Emerg Dis, 2019, 66(1):546-551. DOI:10.1111/tbed.13063. [18] MA S W, LI X, PENG B, et al.Rapid detection of avian influenza A virus (H7N9) by lateral flow dipstick recombinase polymerase amplification[J]. Biol Pharm Bull, 2018, 41(12):1804-1808. DOI:10.1248/bpb.b18-00468. [19] WANG Z H, WANG X J, HOU S H.Development of a recombinase polymerase amplification assay with lateral flow dipstick for rapid detection of feline parvovirus[J]. J Virol Methods, 2019, 271:113679. DOI:10.1016/j.jviromet.2019.113679. [20] JAROENRAM W, OWENS L.Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious [21] SOLIMAN H, EL-MATBOULI M.Rapid detection and differentiation of carp oedema virus and cyprinid [22] PENG Y, ZHENG X, KAN B, et al.Rapid detection of [23] ZHAO G M, WANG H M, HOU P L, et al.Rapid visual detection of [24] WU Y, TIAN K, ZHANG Y, et al.Rapid and visual detection of Lawsonia intracellularis with an improved?recombinase?polymerase?amplification?assay combined with a?lateral?flow?dipstick[J]. BMC Vet Res, 2019, 15(1):97. DOI:10.1186/s12917-019-1841-9. [25] GAO W, HUANG H, ZHU P, et al.Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish[J]. Bioprocess Biosyst Eng, 2018, 41(5):603-611. DOI:10.1007/s00449-018-1895-2. [26] KERSTING S, RAUSCH V, BIER F F, et al.Rapid detection of [27] CUI J, ZHAO Y N, SUN Y L, et al.Detection of [28] ZHAO G M, HOU P L, HUAN Y J, et al.Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the [29] 中华人民共和国国家质量监督检验检疫总局. 实验动物微生物学检测方法: GB/T 14926[S]. [30] 北京市质量技术监督局. 实验动物微生物学等级及监测: DB11/T1459—2017[S]. [31] 黑龙江省质量技术监督局. 实验动物羊微生物学等级及监测: DB23/T2057.10—2017[S]. [32] 黑龙江省质量技术监督局. 实验动物牛微生物学等级及监测: DB23/T2057.5—2017[S]. [33] 中国实验动物学会. 实验动物螺杆菌PCR检测方法: T/CALAS 24—2017[S]. [34] 中国实验动物学会. 实验动物肺支原体PCR检测方法: T/CALAS 40—2017[S]. [35] 中国实验动物学会. 实验动物肺支原体PCR检测方法: T/CALAS 25-2017[S]. [36] WANG H M, HOU P L, ZHAO G M, et al.Development and evaluation of serotype-specific recombinase polymerase amplification combined with lateral flow dipstick assays for the diagnosis of foot-and-mouth disease virus serotype A, O and Asia1[J]. BMC Vet Res, 2018, 14(1):359. DOI:10.1186/s12917-018-1644-4. [37] WANG H M, ZHAO G M, HOU P L, et al.Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick[J]. J Virol Methods, 2018, 261:46-50. DOI:10.1016/j.jviromet.2018.07.011. [38] TU P A, SHIU J S, LEE S H, et al.Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection[J]. J Virol Methods, 2017, 243:98-104. DOI:10.1016/j.jviromet.2017.01.023. [39] YANG Y, QIN X D, ZHANG X L, et al.Development of real-time and lateral flow dipstick recombinase polymerase amplification assays for rapid detection of goatpox virus and sheeppox virus[J]. Virol J, 2017, 14(1):131. DOI:10.1186/s12985-017-0792-7. [40] YANG Y, QIN X D, ZHANG W, et al.Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus[J]. Mol Cell Probes, 2017, 33:32-35. DOI:10.1016/j.mcp.2017.03.005. [41] 于博, 李博宇, 赵博, 等. 布鲁氏菌RPA-LFD检测方法的建立[J]. 中国预防兽医学报, 2019, 41(12):1233-1237. DOI:10.3969/j.issn.1008-0589.201904037. [42] ZHAO G M, HE H B, WANG H M.Use of a recombinase polymerase amplification commercial kit for rapid visual detection of [43] DRAIN P K, HYLE E P, NOUBARY F, et al.Diagnostic point-of-care tests in resource-limited settings[J]. Lancet Infect Dis, 2014, 14(3):239-249. DOI:10.1016/S1473-3099(13)70250-0. [44] KOZEL T R, BURNHAM-MARUSICH A R. Point-of-care testing for infectious diseases: past, present, and future[J]. J Clin Microbiol, 2017, 55(8):2313-2320. DOI:10.1128/JCM.00476-17. |
| [1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
| [2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
| [3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
| [5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
| [6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
| [7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
| [9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
| [10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
| [11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
| [13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
| [14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
| [15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||