Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (1): 65-71.DOI: 10.3969/j.issn.1674-5817.2019.01.013
Previous Articles Next Articles
KUANG De-xuan, WANG Wen-guang, SUN Xiao-mei, DAI Jie-jie
Received:
2018-08-01
Online:
2019-02-25
Published:
2021-01-29
CLC Number:
KUANG De-xuan, WANG Wen-guang, SUN Xiao-mei, DAI Jie-jie. Research Progress of Animal Model Establishment and Gene Editing on Plasmodium falciparum[J]. Laboratory Animal and Comparative Medicine, 2019, 39(1): 65-71.
[1] Murray CJ, Ortblad KF, GuinoVart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384(9947):1005-1070. [2] WHO. World Malaria Report 2015[R]. Geneva: World Health Organization, 2015. [3] Trager W, Jensen JB.Some recent advances in the cultivation of plasmodium falciparum[J]. Isr J Med Sci, 1978,14(5):563-570. [4] Geiman QM, Meagher MJ.Susceptibility of a New World monkey to plasmodium falciparum from man[J]. Nature,1967, 215(5099):437-439. [5] Trager W, Jensen JB.Human malaria parasites in continuous culture[J]. Science, 1976, 193(4254):673-675. [6] 杨恒林. 云南省疟疾防治研究概况[J].中国寄生虫病防治杂志, 2001, 14(1):54-56. [7] Fandeur T, Dubois P, Gysin J, et al.In vitro and in vivo studies on protective and inhibitory antibodies against plasmodium falciparum in the saimiri monkey[J]. J Immunol, 1984, 132(1):432-437. [8] 谢苑灵, 李娟兰, 龙祖培, 等. 体外培养的恶性疟原虫感染八种动物的观察[J]. 中国寄生虫学与寄生虫病杂志, 1987,5(3):238-238. [9] Ponnudurai T, Meuwissen JH, Leeuwenberg AD, et al.The production of mature gametocytes of plasmodium falciparumin continuous cultures of different isolates infective to mosquitoes[J]. Trans R Soc Trop Med Hyg,1982,76(2): 242-250. [10] Mesnil F, Roubaud E.Sur la senibilite du chimpanzee au paludisrne humaine[J]. C R Acad Sci,1917, 165:39-41. [11] Mesnil F, Roubaud E.Essais d'Inoculation du paludisme au chimpanzee[J]. Ann Inst Pasteur,1920, 34(7):466-480. [12] Rodhain J.Susceptibility of the chimpanzee to P. malariae of human origin[J]. Am J Trop Med Hyg,1948, 28(5):629-631. [13] Bray RS.Studies on malaria in chimpanzees V The sporogonous cycle and mosquito transmission of plasmodium vivax schwetzi[J]. J Parasitol, 1958, 44(1):46-51. [14] Rodhain J, Jadin J.The transmission of plasmodium falciparum in the splenectomized chimpanzee[J]. Ann Soc Belges Med Trop Parasitol Mycol, 1964, 44:531-535. [15] Cadigan FC, Iber PK, Chaicumpa V.Plasmodium falciparum in the white handed gibbon: Effect of prolonged infection on serum biochemistry values[J]. Proc Helminth Soc Washington, 1972, 39:28-33. [16] Ward RA, Morris JH, Gould DJ, et al.Susceptibility of the gibbon hylobateslar to falciparum malaria[J]. Science, 1965,150(3703):1604-1605. [17] Taliaferro WH, Taliaferro IG.The transmission of plasmodium falciparum to the Howlor monkey, Alouattasp.I. Generalnature of infection and morphology of the parasites[J]. Amer J Hyg, 1934, 19(2):318-334. [18] Young MD, Porter JA. Johnson CM.Plasmodium vivax transmitted from man to monkey to man[J]. Science, 1966,153(3739):1006-1007. [19] Gieman QM, Siddiqui WA, Schnell JV.Biological basis for susceptibility of aotus trivirgatus to species of plasmodia[J]. Mil Med, 1969, 134(10):780-786. [20] Hickman RL.The use of subhuman primate for experimental studies of human malaria[J]. Mil Med, 1969, 134(10):741-756. [21] Contaeos PG, Collisns WE.Faleiparum malaria transmissible from monkey to man by mosquito bite[J]. Science, 1969, 165(3896):918-919. [22] 江静波, 龙祖培, 周洁娴. 用换人血方法使恶性疟原虫 Plasmodium falciparum 在猕猴和熊猴体内转种传代的研究[J].中山大学学报:自然科学版, 1978, (4):6-16. [23] Gysin J, Aikawa M, Yourneur N, et al.Experimental plasmodium falciparum cerebral malaria in the squirrel monkey simiri sciureus[J]. Exp Parasitol, 1992, 75(4):390-398. [24] Tsuji M, Ishihara C, Arai S, et al.Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of plasmodium falciparum in the mouse[J].Vaccine, 1995, 13(15): 1389-1392. [25] Moore JM, Kumar N, Shultz LD, et al.Maintenance of the human malarial parasite, plasmodium falciparum, in SCID mice and transmission of gametocytes to mosquitoes[J].J Exp Med,1995,181(6): 2265-2270. [26] Badell E, Oeuvray C, Moreno A, et al.Human malaria in immunocompromised mice: an in vivo model to study defense mechanisms against plasmodium falciparum[J]. J Exp Med, 2000, 192(11):1653-1660. [27] Farnert A, Snounou G, Rooth I, et al.Daily dynamics of plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area[J]. Am J Trop Med Hyg, 1997, 56(5):538-547. [28] Moreno A, Sabater M, Moreno FJ, et al.Experimental infection of immunomodulated NOD LtSz-SCID mice as a new model for plasmodium falciparum erythrocytic stages[J]. Parasitol Res, 2005, 95(2):97-105. [29] Goonewardene R, Daily J, Kaslow D, et al.Transfection of the malaria parasites and exporession of firefiy luciferase[J]. Proc Nati Acad Sic U S A, 1993, 90(11):5234-9236. [30] Wu Y, Sifri CD, Lei HH, et al.Transfection of plasmodium falciparum within human red blood cell[J]. Proc Nati Acad Sic U S A, 1995, 92(4):973-977. [31] Van Dijk MR, Waters AP, Janse CJ, et al.Stable transfetion of malaria parasite blood stage[J]. Science, 1995, 268(5215):1358-1362. [32] Waters AP, Thomas AW, Van Dijk MR, et al.Transfection of malaria parasites[J]. Methods, 1997, 13(2):134-147. [33] Ménard R, Janse CJ.Gene targeting in malaria parasites. Methods[J], 1997, 13(2):148-157. [34] Gardner MJ, Hall N, Fung E, et al.Genome sequence of the human malaria parasite plasmodium falciparum[J]. Nature, 2002, 419(6906):498-511. [35] Crabb BS.Transfection technology and the study of drug resistance in the malaria parasite plasmodium falciparum[J]. Drug Resist Update, 2002, 5(3-4):126-130. [36] Horrocks P, Dechering K, Lanzer M.Control of gene expression in plasmodium falciparum[J]. Mol Biochem Parasitol, 1998, 95(2):171-181. [37] Fidock DA, Nomura T, Cooper RA, et al.Allelic modifications of the cg2 and cgl genes do not alter the chloroquine response of drug-resistant plasmodium falciparum[J]. Mol Biochem Parasitol, 2000, 110(1):1-10. [38] Sultan AA, Thathy V, Frevert U, et al.TRAP is necessary far gliding motility and infectivity of plasmodium sporozoites[J]. Cell, 1997, 90(3):511-522. [39] Crabb BS, Cooke BM, Reeder JC, et al.Targeted gene disruption show that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress[J]. Cell, 1997,89(2):287-296. [40] Triglia T, Healer J, Caruana SR, et al.Apical membrane antigen 1 plays a central role in erythrocyte in vasion by plasmodium species[J]. Mol Microbiol, 2000, 38(4):706-718. [41] Baldi DL, Andrews KT, Waller RF, et al.RAP1 controls rhoptry targeting of RAP2 in the malaria parasite plasmodium falciparum[J]. EMBO J, 2000, 19(11):2435-2443. [42] Jansen R, Embden J, Gaastra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575. [43] Sollelis L, Ghorbal M, Mac Pherson CR, et al.First efficient CRISPR-Cas9-mediated genome editing in leishmania parasites[J]. Cell Microbiol, 2015, 17(10):1405-1412. [44] Zhang WW, Matlashewski G.CRISPR-Cas9-mediated genome editing in leishmania donovani[J]. MBio, 2015, 6(4): e00861-15. [45] Wagner JC, Platt RJ, Goldfless SJ, et al.Efficient crispr-cas9-mediated genome editing in plasmodium falciparum[J]. Nature Methods, 2014, 11(9):915-918. [46] Kuang DX, Qiao JC, Zhou L, et al.Tag-in to endogenous genes of plasmodium falciparum using CRISPR/Cas9[J]. Parasit Vectors, 2017, 10(1):595-602. [47] Ariey F, Witkowski B, Amaratunga C, et al.A molecular marker of artemisinin-resistant plasmodium falciparum malaria[J]. Nature, 2014, 505(7481):50-55. [48] Ghorbal M, Gorman M, Macpherson CR, et al.Genome editing in the human malaria parasite plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8):819-821. [49] Ng CL, Siciliano G, Lee MC, et al.CRISPR-Cas9-modified pfmdr1 protects plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs[J]. Mol Microbiol, 2016, 101(3):381-393. |
[1] | Ya ZHAO, Caiqin ZHANG, Han MENG, Jing QIN, Bing BAI, Yong ZHAO, Xu GE, Changhong SHI. Exploration of Laboratory Animal Science Teaching Practice from Perspectives of Curriculum Ideology and Politics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 641-646. |
[2] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[3] | Yongqiang NIE, Zhaoxia WANG. Rescue Technology and Its Application of Endangered Gene-Edited Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 636-640. |
[4] | Yong ZHAO. Evolution and Prospects of Laboratory Animal Management: A Case Study of Shanghai's Development in the Past Decade [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 492-503. |
[5] | Liping FENG, Qi ZHU, Jinxing LIN. Current Status and Reflection on the Study of Welfare for Laboratory Fish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 524-530. |
[6] | Jinxing LIN, Xindong WANG, Xuebing BAI, Liping FENG, Shuwu XIE, Qiusheng CHEN. Fine Structure of the Trunk Kidney and Distribution of Its Secreted Exosomes in the Adult Zebrafish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 531-540. |
[7] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[8] | Shuzhen ZHANG, Yanguang ZHAO. Investigation Report on the Production and Utilization Status of Experimental Mini-pigs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 559-565. |
[9] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[10] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[11] | Lianxiang GUO. Revision of Standards for Microbiological and Parasitological Grades in Laboratory Animals and Its Comparison to Foreign Standards [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 339-346. |
[12] | Ying HUANG, Siyu WEI, Li CAI, Sujing QIANG, Dongting LI, Yuqiang DING. Microbiological Monitoring Analysis of Laboratory Rats and Mice from Vendors: Department of Laboratory Animal Science of Fudan University as an Example [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 347-354. |
[13] | Xinyan BIAN, Yong LU, Yan WANG, Qiang SUN. Analysis of the Birthing Behaviour of Cynomolgus Macaques [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 355-362. |
[14] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[15] | Hui CHENG, Fei FANG, Jiahao SHI, Hua YANG, Mengjie ZHANG, Ping YANG, Jian FEI. H1 Linker Histone Gene Regulates Lifespan via Dietary Restriction Pathways in Caenorhabditis elegans [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 271-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||