Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (4): 419-427.DOI: 10.12300/j.issn.1674-5817.2024.032
• Animal Models of Human Diseases • Previous Articles Next Articles
ZHANG Zishan, WU Ying, LI Feiyang, DU Xiaoyan()(
)
Received:
2024-02-27
Revised:
2024-08-02
Online:
2024-08-25
Published:
2024-09-06
Contact:
DU Xiaoyan
CLC Number:
ZHANG Zishan,WU Ying,LI Feiyang,et al. Research Advances in Mongolian Gerbil Models of Cerebral Ischemia and Auditory Impairment[J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 419-427. DOI: 10.12300/j.issn.1674-5817.2024.032.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.032
Figure 1 Mechanistic association between patients with variations in the Willis’circle and Mongolian gerbil cerebral ischemia model (Drawn by Figdraw software)Note:Main defects in patients with variations in the Willis' circle (A); preparation of global cerebral ischemia and hemispheric cerebral ischemia models by blocking bilateral or unilateral carotid arteries in Mongolian gerbils (B).
1 | 李长龙, 杜小燕, 陈振文. 长爪沙鼠资源开发利用进展[J]. 中国实验动物学报, 2014, 22(6):106-109, 113. DOI: 10.3969/j.issn.1005-4847.2014.06.020 . |
LI C L, DU X Y, CHEN Z W. Advances in development and application of Mongolian gerbil resource[J]. Acta Lab Animalis Sci Sin, 2014, 22(6):106-109, 113. DOI: 10.3969/j.issn.1005-4847.2014.06.020 . | |
2 | LEVINE S, PAYAN H. Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus)[J]. Exp Neurol, 1966, 16(3):255-262. DOI: 10.1016/0014-4886(66)90062-8 . |
3 | FINCK A, SCHNECK C D, HARTMAN A F. Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus)[J]. J Comp Physiol Psychol, 1972, 78(3):375-380. DOI: 10.1037/h0032373 . |
4 | VINCENT A L, RODRICK G E, SODEMAN W A. The Mongolian gerbil in aging research[J]. Exp Aging Res, 1980, 6(3):249-260. DOI: 10.1080/03610738008258361 . |
5 | FELICE C D, CAPUA B D, TASSI R, et al. Non-functioning posterior communicating arteries of circle of Willis in idiopathic sudden hearing loss[J]. Lancet, 2000, 356(9237):1237-1238. DOI: 10.1016/S0140-6736(00)02790-2 . |
6 | DE CAPUA B, DE FELICE C, D'ONZA M, et al. Idiopathic sudden hearing loss: role of the posterior communicating cerebral arteries of the Willis' circle[J]. Acta Otorhinolaryngol Ital, 2001, 21(3):144-150. |
7 | MENDELSON S J, PRABHAKARAN S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11):1088-1098. DOI: 10.1001/jama.2020.26867 . |
8 | LIN E, KAMEL H, GUPTA A, et al. Incomplete circle of Willis variants and stroke outcome[J]. Eur J Radiol, 2022, 153:110383. DOI: 10.1016/j.ejrad.2022.110383 . |
9 | 蔡冠晖, 郑志研, 李林蔚, 等. Willis环变异与颈动脉狭窄及脑缺血疾病关系CTA研究[J]. 影像研究与医学应用, 2019, 5(15):35-37. DOI:CNKI:SUN:YXYY.0.2019-15-019 . |
CAI G H, ZHENG Z Y, LI L W, et al. The association of Circle of Willis variants with carotid artery stenosis and brain ischemia: CTA study[J]. J Imag Res Med Appl, 2019, 5(15):35-37. DOI:CNKI:SUN:YXYY.0.2019-15-019 . | |
10 | ŠIRVINSKAS A, LENGVENIS G, LEDAS G, et al. Circle of Willis configuration and Thrombus localization impact on ischemic stroke patient outcomes: a systematic review[J]. Medicina, 2023, 59(12):2115. DOI: 10.3390/medicina59122115 . |
11 | 张贺, 陈振文, 王承利, 等. 长爪沙鼠不同willis血管类型全基因组文库构建[J]. 中国比较医学杂志, 2014, 24(11):27-31, 32. DOI: 10.3969/j.issn.1671.7856.2014.011.006 . |
ZHANG H, CHEN Z W, WANG C L, et al. Genomic library construction of different Willis circle in Meriones unguiculatus [J]. Chin J Comp Med, 2014, 24(11):27-31, 32. DOI: 10.3969/j.issn.1671.7856.2014.011.006 . | |
12 | 郑振峰, 杜小燕, 王迎, 等. 长爪沙鼠脑底动脉Willis环变异缺失类型与脑缺血模型症状相关性分析[J]. 中国兽医学报, 2011, 31(6):908-912. DOI:CNKI:SUN:ZSYX.0.2011-06-029 . |
ZHENG Z F, DU X Y, WANG Y, et al. Analysis of the relationship between the variation of Willis circle and the symptoms of ischemic model in gerbils[J]. Chin J Vet Sci, 2011, 31(6):908-912. DOI:CNKI:SUN:ZSYX.0.2011-06-029 . | |
13 | SEAL J B, BUCHH B N, MARKS J D. New variability in cerebrovascular anatomy determines severity of hippocampal injury following forebrain ischemia in the Mongolian gerbil[J]. Brain Res, 2006, 1073-1074:451-459. DOI: 10.1016/j.brainres.2005.12.024 . |
14 | 杜小燕, 杨慧, 孟霞, 等. 长爪沙鼠脑底前后交通动脉变异类型分析[J]. 中国实验动物学报, 2006, 14(2):111-113, 封三. DOI: 10.3969/j.issn.1005-4847.2006.02.009 . |
DU X Y, YANG H, MENG X, et al. Variation of anatomical patterns of brain anterior and posterior communication arteries in Mongolian gerbils[J]. Acta Lab Anim Sci Sin, 2006, 14(2):111-113, inside back cover. DOI: 10.3969/j.issn.1005-4847.2006.02.009 . | |
15 | DU X Y, ZHU X D, DONG G, et al. Characteristics of circle of Willis variations in the Mongolian gerbil and a newly established ischemia-prone gerbil group[J]. ILAR J, 2011, 52(1): E1-E7. DOI: 10.1093/ilar.52.1.e1 . |
16 | DU X Y, WANG D P, LI Y, et al. Newly breeding an inbred strain of ischemia-prone Mongolian gerbils and its reproduction and genetic characteristics[J]. Exp Anim, 2018, 67(1):83-90. DOI: 10.1538/expanim.17-0071 . |
17 | ABE Y, TOYAMA K, SHINOHARA A, et al. Message to researchers: the characteristic absence of a posterior communicating artery is easily lost in the gerbil[J]. Anat Sci Int, 2023, 98(3):426-433. DOI: 10.1007/s12565-022-00698-z . |
18 | GAUDET R J, LEVINE L. Effect of unilateral common carotid artery occlusion on levels of prostaglandins D2, F2 alpha and 6-keto-prostaglandin F1 alpha in gerbil brain[J]. Stroke, 1980, 11(6):648-652. DOI: 10.1161/01.str.11.6.648 . |
19 | 杜小燕, 杨慧, 王钜. 长爪沙鼠脑缺血模型的建立及脑组织中超氧歧化酶和丙二醛含量的测定[J]. 中国比较医学杂志, 2006, 16(11):664-667, 封二. DOI: 10.3969/j.issn.1671-7856.2006.11.008 . |
DU X Y, YANG H, WANG J. Model foundation of cerebral ischemia and determination of SOD and MDA in brain of Mongolian gerbil after cerebral ischemia[J]. Chin J Comp Med, 2006, 16(11):664-667, inside front cover. DOI: 10.3969/j.issn.1671-7856.2006.11.008 . | |
20 | MAEDA M, AKAI F, NISHIDA S, et al. Intracerebral distribution of albumin after transient cerebral ischemia: light and electron microscopic immunocytochemical investigation[J]. Acta Neuropathol, 1992, 84(1):59-66. DOI: 10.1007/BF00427216 . |
21 | TANAKA K, FUKUUCHI Y, GOMI S, et al. Alteration of second-messenger ligand binding following 2-hr hemispheric ischemia in the gerbil brain[J]. Exp Neurol, 1992, 117(3):254-259. DOI: 10.1016/0014-4886(92)90134-c . |
22 | AHN J H, SONG M, KIM H, et al. Differential regional infarction, neuronal loss and gliosis in the gerbil cerebral hemisphere following 30 min of unilateral common carotid artery occlusion[J]. Metab Brain Dis, 2019, 34(1):223-233. DOI: 10.1007/s11011-018-0345-9 . |
23 | YAGITA Y, MATSUMOTO M, KITAGAWA K, et al. DNA cleavage and proteolysis of microtubule-associated protein 2 after cerebral ischemia of different severity[J]. Neuroscience, 1999, 92(4):1417-1424. DOI: 10.1016/s0306-4522(99)00079-2 . |
24 | FUKUOKA S, YEH H, MANDYBUR T I, et al. Effect of insulin on acute experimental cerebral ischemia in gerbils[J]. Stroke, 1989, 20(3):396-399. DOI: 10.1161/01.str.20.3.396 . |
25 | KUROIWA T, ITO U, HAKAMATA Y, et al. Evolution of energy failure after repeated cerebral ischemia in gerbils[C]//Brain Edema XI. Vienna: Springer, 2000:43-46. DOI: 10.1007/978-3-7091-6346-7_9 . |
26 | BERRY K, WIŚNIEWSKI H M, SVARZBEIN L, et al. On the relationship of brain vasculature to production of neurological deficit and morphological changes following acute unilateral common carotid artery ligation in gerbils[J]. J Neurol Sci, 1975, 25(1):75-92. DOI: 10.1016/0022-510x(75)90188-4 . |
27 | WU Y, HU C J, LI Z H, et al. Development of a new cerebral ischemia reperfusion model of Mongolian gerbils and standardized evaluation system[J]. Animal Model Exp Med, 2024, 7(1):48-55. DOI: 10.1002/ame2.12378 . |
28 | LEÓN-MORENO L C, CASTAÑEDA-ARELLANO R, RIVAS-CARRILLO J D, et al. Challenges and improvements of developing an ischemia mouse model through bilateral common carotid artery occlusion[J]. J Stroke Cerebrovasc Dis, 2020, 29(5):104773. DOI: 10.1016/j.jstrokecerebrovasdis. 2020.104773 . |
29 | ISLAM M S, SHIN H Y, YOO Y J, et al. Fermented Mentha arvensis administration provides neuroprotection against transient global cerebral ischemia in gerbils and SH-SY5Y cells via downregulation of the MAPK signaling pathway[J]. BMC Complement Med Ther, 2022, 22(1):172. DOI: 10.1186/s12906-022-03653-7 . |
30 | DU BOIS M, BOWMAN P D, GOLDSTEIN G W. Cell proliferation after ischemic infarction in gerbil brain[J]. Brain Res, 1985, 347(2):245-252. DOI: 10.1016/0006-8993(85)90183-0 . |
31 | PARK J H, LEE T K, KIM D W, et al. Neuroprotective effects of aucubin against cerebral ischemia and ischemia injury through the inhibition of the TLR4/NF-κB inflammatory signaling pathway in gerbils[J]. Int J Mol Sci, 2024, 25(6):3461. DOI: 10.3390/ijms25063461 . |
32 | 张震, 王进, 王世全, 等. 小鼠全脑缺血模型的研究进展[J]. 神经解剖学杂志, 2021, 37(6):709-712. DOI: 10.16557/j.cnki.1000-7547.2021.06.016 . |
ZHANG Z, WANG J, WANG S Q, et al. Research progress of global cerebral ischemia model in mice[J]. Chin J Neuroanat, 2021, 37(6):709-712. DOI: 10.16557/j.cnki.1000-7547.2021.06.016 . | |
33 | KIRINO T, SANO K. Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus[J]. Acta Neuropathol, 1984, 62(3):209-218. DOI: 10.1007/BF00691854 . |
34 | KONDO T, YOSHIDA S, NAGAI H, et al. Transient forebrain ischemia induces impairment in cognitive performance prior to extensive neuronal cell death in Mongolian gerbil (Meriones unguiculatus)[J]. J Vet Sci, 2018, 19(4):505-511. DOI: 10.4142/jvs.2018.19.4.505 . |
35 | UEDA H, TAGAWA K, FURUYA E, et al. A combined analysis of regional energy metabolism and immunohistochemical ischemic damage in the gerbil brain[J]. J Neurochem, 1999, 72(3):1232-1242. DOI: 10.1046/j.1471-4159.1999.0721232.x . |
36 | YANG E J, CAI M D, LEE J H. Neuroprotective effects of electroacupuncture on an animal model of bilateral common carotid artery occlusion[J]. Mol Neurobiol, 2016, 53(10):7228-7236. DOI: 10.1007/s12035-015-9610-7 . |
37 | PARK J H, LEE T K, KIM D W, et al. Neuroprotective effects of salicin in a gerbil model of transient forebrain ischemia by attenuating oxidative stress and activating PI3K/akt/GSK3β pathway[J]. Antioxidants, 2021, 10(4):629. DOI: 10.3390/antiox10040629 . |
38 | KIM H, AHN J H, SONG M, et al. Pretreated fucoidan confers neuroprotection against transient global cerebral ischemic injury in the gerbil hippocampal CA1 area via reducing of glial cell activation and oxidative stress[J]. Biomedecine Pharmacother, 2019, 109:1718-1727. DOI: 10.1016/j.biopha. 2018.11.015 . |
39 | PARK J H, AHN J H, LEE T K, et al. Laminarin pretreatment provides neuroprotection against forebrain ischemia/reperfusion injury by reducing oxidative stress and neuroinflammation in aged gerbils[J]. Mar Drugs, 2020, 18(4):213. DOI: 10.3390/md18040213 . |
40 | 周洁, 曾晓云, 罗志秀, 等. 丹红注射液对沙鼠前脑缺血再灌注后脑组织的神经保护作用[J]. 中国临床药理学杂志, 2021, 37(3):255-257, 261. DOI: 10.13699/j.cnki.1001-6821.2021.03.011 . |
ZHOU J, ZENG X Y, LUO Z X, et al. Neuroprotective effect of Danhong Injection on cerebral tissue of Mongolian Gerbils after forebrain ischemia-reperfusion[J]. Chin J Clin Pharmacol, 2021, 37(3):255-257, 261. DOI: 10.13699/j.cnki.1001-6821.2021.03.011 . | |
41 | RYUK J A, KO B S, MOON N R, et al. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis[J]. Antioxidants, 2022, 11(1):168. DOI: 10.3390/antiox11010168 . |
42 | SONG M, AHN J H, KIM H, et al. Chronic high-fat diet-induced obesity in gerbils increases pro-inflammatory cytokines and mTOR activation, and elicits neuronal death in the striatum following brief transient ischemia[J]. Neurochem Int, 2018, 121:75-85. DOI: 10.1016/j.neuint. 2018.09.009 . |
43 | PARK J H, AHN J H, SONG M, et al. A 2-Min transient ischemia confers cerebral ischemic tolerance in non-obese gerbils, but results in neuronal death in obese gerbils by increasing abnormal mTOR activation-mediated oxidative stress and neuroinflammation[J]. Cells, 2019, 8(10):1126. DOI: 10.3390/cells8101126 . |
44 | KIRINO T. Delayed neuronal death[J]. Neuropathology, 2000, 20(Suppl): S95-S97. DOI: 10.1046/j.1440-1789.2000.00306.x. |
45 | LEE T K, KIM H, SONG M, et al. Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia[J]. Neural Regen Res, 2019, 14(8):1394-1403. DOI: 10.4103/1673-5374.253524 . |
46 | LEE J C, PARK J H, AHN J H, et al. New GABAergic neurogenesis in the hippocampal CA1 region of a gerbil model of long-term survival after transient cerebral ischemic injury[J]. Brain Pathol, 2016, 26(5):581-592. DOI: 10.1111/bpa.12334 . |
47 | LEE J C, PARK J H, KIM I H, et al. Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia[J]. Brain Pathol, 2017, 27(3):276-291. DOI: 10.1111/bpa.12389 . |
48 | LONGA E Z, WEINSTEIN P R, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91. DOI: 10.1161/01.str.20.1.84 . |
49 | RICO J L, MUÑOZ-TABARES L F, LAMPREA M R, et al. Diazepam reduces escape and increases closed-arms exploration in gerbils after 5 min in the elevated plus-maze[J]. Front Psychol, 2019, 10:748. DOI: 10.3389/fpsyg.2019.00748 . |
50 | 李晓蕾, 李忠华, 王鹏. STEAP3在脑缺血再灌注损伤沙鼠中的表达及意义[J]. 中国医科大学学报, 2023, 52(1):57-61, 67. DOI: 10.12007/j.issn.0258-4646.2023.01.011 . |
LI X L, LI Z H, WANG P. Expression of STEAP3 and its significance in gerbils with cerebral ischemia-reperfusion injury[J]. J China Med Univ, 2023, 52(1):57-61, 67. DOI: 10.12007/j.issn.0258-4646.2023.01.011 . | |
51 | LEWCZUK A, BORATYŃSKA-JASIŃSKA A, ZABŁOCKA B. Validation of the reference genes for expression analysis in the hippocampus after transient ischemia/reperfusion injury in gerbil brain[J]. Int J Mol Sci, 2023, 24(3):2756. DOI: 10.3390/ijms24032756 . |
52 | ZORIO D A R, MONSMA S, SANES D H, et al. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome[J]. Genomics, 2019, 111(3):441-449. DOI: 10.1016/j.ygeno.2018.03.001 . |
53 | TSUZUKI N, WASANO K. Idiopathic sudden sensorineural hearing loss: a review focused on the contribution of vascular pathologies[J]. Auris Nasus Larynx, 2024, 51(4):747-754. DOI: 10.1016/j.anl.2024.05.009 . |
54 | 冯彪, 邱建华. 耳蜗缺血损伤动物模型的建立[J]. 听力学及言语疾病杂志, 2008, 16(6):502-505. DOI: 10.3969/j.issn.1006-7299.2008.06.018 . |
FENG B, QIU J H. A guinea pig model of cochlear ischemia[J]. J Audiol Speech Pathol, 2008, 16(6):502-505. DOI: 10.3969/j.issn.1006-7299.2008.06.018 . | |
55 | LIN N T, URATA S, COOK R, et al. Sex differences in the auditory functions of rodents[J]. Hear Res, 2022, 419:108271. DOI: 10.1016/j.heares.2021.108271 . |
56 | OGAWA H, OKADA M, SHUDOU M, et al. Prevention of ischemia-induced hearing loss by intravenous administration of hydrogen-rich saline in gerbil[J]. Neurosci Lett, 2018, 665:195-199. DOI: 10.1016/j.neulet.2017.12.013 . |
57 | REN T, BROWN N J, ZHANG M, et al. A reversible ischemia model in gerbil cochlea[J]. Hear Res, 1995, 92(1-2):30-37. DOI: 10.1016/0378-5955(95)00192-1 . |
58 | MOM T, AVAN P, BONFILS P, et al. A model of cochlear function assessment during reversible ischemia in the Mongolian gerbil[J]. Brain Res Brain Res Protoc, 1999, 4(3):249-257. DOI: 10.1016/s1385-299x(99)00026-4 . |
59 | AFIA F E, GIRAUDET F, GILAIN L, et al. Resistance of gerbil auditory function to reversible decrease in cochlear blood flow[J]. Audiol Neurootol, 2017, 22(2):89-95. DOI: 10.1159/000478650 . |
60 | CHOUDHURY N, CHEN F Y, SHI X R, et al. Volumetric imaging of blood flow within cochlea in gerbil in vivo [J]. IEEE J Sel Top Quantum Electron, 2010, 16(3):524-529. DOI: 10.1109/JSTQE.2009.2032671 . |
61 | VELDE H M, RADEMAKER M M, DAMEN J, et al. Prediction models for clinical outcome after cochlear implantation: a systematic review[J]. J Clin Epidemiol, 2021, 137:182-194. DOI: 10.1016/j.jclinepi.2021.04.005 . |
62 | HUTSON K A, PULVER S H, ARIEL P, et al. Light sheet microscopy of the gerbil cochlea[J]. J Comp Neurol, 2021, 529(4):757-785. DOI: 10.1002/cne.24977 . |
63 | RAHMAN M T, CHARI D A, ISHIYAMA G, et al. Cochlear implants: causes, effects and mitigation strategies for the foreign body response and inflammation[J]. Hear Res, 2022, 422:108536. DOI: 10.1016/j.heares.2022.108536 . |
64 | RISOUD M, SIRCOGLOU J, DEDIEU G, et al. Imaging and cell count in cleared intact cochlea in the Mongolian gerbil using laser scanning confocal microscopy[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2017, 134(4):221-224. DOI: 10.1016/j.anorl.2017.01.001 . |
65 | TOULEMONDE P, RISOUD M, LEMESRE P E, et al. 3D analysis of gerbil cochlea with cochlear implant[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2022, 139(6):333-336. DOI: 10.1016/j.anorl.2022.03.002 . |
66 | CHOUDHURY B, ADUNKA O F, AWAN O, et al. Electrophysiologic consequences of flexible electrode insertions in gerbils with noise-induced hearing loss[J]. Otol Neurotol, 2014, 35(3):519-525. DOI: 10.1097/MAO.0b013e31829bdf2b . |
67 | GUI F, SONG D D, WANG H Y, et al. Exogenous neuritin restores auditory following cochlear spiral ganglion neuron denervation of gerbils[J]. Neurosci Res, 2024, 200:8-19. DOI: 10.1016/j.neures.2023.11.001 . |
68 | NATARAJAN N, BATTS S, STANKOVIC K M. Noise-induced hearing loss[J]. J Clin Med, 2023, 12(6):2347. DOI: 10.3390/jcm12062347 . |
69 | MA L, YI H J, YUAN F Q, et al. An efficient strategy for establishing a model of sensorineural deafness in rats[J]. Neural Regen Res, 2015, 10(10):1683-1689. DOI: 10.4103/1673-5374.153704 . |
70 | 宋丹丹, 桂飞, 汪海燕, 等. 长爪沙鼠不同感音神经性耳聋模型的建立及比较[J]. 石河子大学学报(自然科学版), 2024, 42(1):70-75. DOI: 10.13880/j.cnki.65-1174/n.2023.22.043 . |
SONG D D, GUI F, WANG H Y, et al. Establishment and comparison of sensorineural deafness models in Mongolian gerbils[J]. J Shihezi Univ Nat Sci, 2024, 42(1):70-75. DOI: 10.13880/j.cnki.65-1174/n.2023.22.043 . | |
71 | CASTAÑO-GONZÁLEZ K, KÖPPL C, PYOTT S J. The crucial role of diverse animal models to investigate cochlear aging and hearing loss[J]. Hear Res, 2024, 445:108989. DOI: 10.1016/j.heares.2024.108989 . |
72 | WANG Y, ZHAO P K, SONG Z D, et al. Generation of gene-knockout Mongolian gerbils via CRISPR/Cas9 system[J]. Front Bioeng Biotechnol, 2020, 8:780. DOI: 10.3389/fbioe.2020.00780 . |
73 | 周珺, 许向阳, 张长青, 等. 重度抑郁症啮齿类动物模型研究进展[J]. 中国药理学通报, 2021, 37(12):1648-1653. DOI: 10.3969/j.issn.1001-1978.2021.12.005 . |
ZHOU J, XU X Y, ZHANG C Q, et al. Research progress in rodent modeling of major depressive disorder[J]. Chin Pharmacol Bull, 2021, 37(12):1648-1653. DOI: 10.3969/j.issn.1001-1978.2021.12.005 . |
[1] | Lingqun LU, Honggang GUO, Qiaojuan SHI, Fangwei DAI, Xiaofeng CHU. Histological Characteristics of the Kidney in Mongolian Gerbils of Different Ages [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 61-66. |
[2] | WANG Zhi-yuan, LIU Yue-huan. Detection of Whole Methylation Level of Liver Genomic DNA in Mongolian Gerbil Based on Indirect ELISA [J]. Laboratory Animal and Comparative Medicine, 2018, 38(1): 44-47. |
[3] | WANG Cun-long, DU Xiao-yan, LIU Xin, GUO Meng, LV Jian-yi, CHEN Zhen-wen, LI Chang-long. Mammary Gland Hyperplasiain Model in Male Mongolian Gerbil Induced by Estradiol [J]. Laboratory Animal and Comparative Medicine, 2017, 37(5): 352-356. |
[4] | WANG Fei-fei, GONG Jing-jing, HUO Xue-yun, LU-jing, GUO-Meng, LIU-Xin, LI Chang-long, DU Xiao-yan, CHEN Zhen-wen, LV Jian-yi. Analysis on Cyclooxygenase 2 Expression in Different Tissues from Spontaneous Diabetic Mongolian Gerbils [J]. Laboratory Animal and Comparative Medicine, 2017, 37(2): 118-122. |
[5] | LI Yin-yin, GONG Jing-jing, WU Shao-liang, LI Xiao-hong, WANG Cun-long, HUO Xue-yun, LU Jing, LV Jian-yi, LIU Xin, GUO Meng, LI Chang-long, CHEN Zhen-wen, DU Xiao-yan. Expression of ND3 in 5 Tissues of Hereditary Diabetic Mongolian Gerbils [J]. Laboratory Animal and Comparative Medicine, 2017, 37(1): 6-10. |
[6] | WANG Ji, WEI Li, FU Rui, LI Xiao-bo, WANG Shu-jing, XING Jin, FENG Yu-fang, GONG Wei, YUE Bing-fei, HE Zheng-ming. Establishment and Preliminary Application of ELISA in Detecting Lymphocytic Choriomeningitis Virus Antibody in Mongolian Gerbil [J]. Laboratory Animal and Comparative Medicine, 2015, 35(6): 473-477. |
[7] | LIU Yue-huan, WANG Zhi-yuan, DU Jiang-tao, WU Jiu-sheng, YU Chen-huan, CHEN Wen-wen, YING Hua-zhong. Preliminary Detection of Hyperlipidemia in Mongolian Gerbils [J]. Laboratory Animal and Comparative Medicine, 2014, 34(5): 365-371. |
[8] | REN Xiao-li, LIN Gang, WANG Jie-jie, DU Ji-mei. Effects of Chinese Propolis on Gastric Mucosa of Mongolian Gerbils Infected with Helicobacter pylori [J]. Laboratory Animal and Comparative Medicine, 2014, 34(4): 303-307. |
[9] | WANG Ji, FU Rui, WEI Li, LI Xiao-bo, FENG Yu-fang, WANG Shu-jing, GONG Wei, YUE Bing-fei, HE Zheng-ming. Development and Preliminary Application of RT-PCR Method for Detection of Mouse Adenovirus [J]. Laboratory Animal and Comparative Medicine, 2014, 34(1): 35-41. |
[10] | WEI Li, WANG Ji, FU Rui, LI Xiao-bo, WANG Shu-jing, YUE Bing-fei, HE Zheng-ming. Establishment and Preliminary Application of ELISA for Detecting Antibody to Mouse Hepatitis Virus in Mongolian Gerbil [J]. Laboratory Animal and Comparative Medicine, 2013, 33(3): 204-209. |
[11] | XIE Xin-yu, DU Xiao-yan. Progress on Mongolian Gerbil Applied in Research of Helicobacter pylori, Hearing and Anxiety [J]. Laboratory Animal and Comparative Medicine, 2012, 32(3): 254-258. |
[12] | LIU Feng-hua1,GUO Hong-gang2,LOU Qi2,DAI Fang-wei2,LU Ling-qun2,SA Xiao-ying2,ZHOU Guang-xing1. Primary Observation on Hyperglycemic Models in Mongolian Gerbils Induced by Different Dosage of Streptozotocin [J]. Laboratory Animal and Comparative Medicine, 2010, 30(5): 335-339. |
[13] | LIU Yue-huan, SHI Qiao-juan,GUO Hong-gang, MA Wei-feng . Analysis and Clone of Apolipoprotein E Extron 4 in Mongolian Gerbil [J]. Laboratory Animal and Comparative Medicine, 2008, 28(5): 289-298. |
[14] | LIU Yue-huan1,WU Jiu-sheng2,SHI Zhang-Kui1. Clone and Identification of β-defensin Gene in Mongolian Gerbil [J]. Laboratory Animal and Comparative Medicine, 2008, 28(4): 215-219. |
[15] | LIU Yue-Huan, KE Xian-Fu, LOU Qi, ZHOU Sha-Sang, SA Xiao-Ying. Elementary study on Genetic Diversity of Biochemical Gene Markers of Z:ZCLA Mongolian Gerbil [J]. Laboratory Animal and Comparative Medicine, 2006, 26(3): 165-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||