 
  
			 
 
			 
 
			 
 
			 
 
			 
 
		实验动物与比较医学 ›› 2025, Vol. 45 ›› Issue (5): 524-541.DOI: 10.12300/j.issn.1674-5817.2025.048
        
               		中国研究型医院学会医学动物实验专家委员会, 中国研究型医院学会神经再生与组织器官损伤修复专业委员会, 中国解剖学会工程解剖学分会,李忠海( ), 李斌(
), 李斌( ), 赵杰(
), 赵杰( ), 杨操(
), 杨操( ), 李英俊(
), 李英俊( )
)
                  
        
        
        
        
    
收稿日期:2025-03-24
									
				
											修回日期:2025-08-23
									
				
									
				
											出版日期:2025-10-25
									
				
											发布日期:2025-10-23
									
			通讯作者:
					基金资助:
        
               		 ), LI Bin(
), LI Bin( ), ZHAO Jie(
), ZHAO Jie( ), YANG Cao(
), YANG Cao( ), LI Yingjun(
), LI Yingjun( )
)
			  
			
			
			
                
        
    
Received:2025-03-24
									
				
											Revised:2025-08-23
									
				
									
				
											Published:2025-10-25
									
				
											Online:2025-10-23
									
			Contact:
					LI Zhonghai (ORCID: 0000-0003-4735-1193), E-mail: lizhonghaispine@126.com;摘要:
椎间盘突出症是骨科的高发疾病,而作为其关键病理基础的椎间盘退行性病变(intervertebral disc degeneration,IDD)是一个以细胞外基质进行性降解、结构破坏与生物力学功能丧失为特征的复杂病理过程,不仅在人群中呈现出更高的患病率,更是导致全球人类慢性腰背痛与功能障碍的首要原因,造成了巨大的社会经济负担。尽管构建IDD动物模型对探索该疾病病理机制与推动转化研究具有重要意义,但目前关于IDD 的病因与病理生理机制尚未完全阐明,且人类与常见实验动物在脊柱解剖、生物力学及退变病程上存在显著差异,加之现有的IDD动物模型繁杂多样且缺乏统一标准。因此,本指南系统梳理了啮齿类动物、非人灵长类动物以及兔、绵羊/山羊、猪、犬等不同动物的IDD模型,重点阐述三类主流模型的建模原理:诱发性模型(如纤维环/髓核/终板损伤和机械力学损伤)可控性强、周期短,适用于模拟急性损伤与快速筛选疗法;自发性模型能更好地模拟人类与年龄相关的自然退变进程;基因修饰模型则为解析特定分子通路提供了有力工具。指南深入剖析了这些模型的关键技术要点、可重复性与临床相关性,并比较其优势、局限及适用研究场景,旨在引导研究者进行“以科学问题为导向”的精准模型选择。同时,为提升研究结果的深度与可比性,本指南提出了涵盖影像学、组织学、生物化学与分子生物学、生物力学及疼痛行为学等多维度的IDD动物模型实验终点评估体系与推荐观察时间窗,并明确了贯穿实验全程的“替代、减少、优化(replacement,reduction,refinement,3Rs)”伦理原则与动物福利要求。此外,指南还展望了结合单细胞组学、多尺度力学分析及加强疼痛表型评估等未来研究方向。本指南旨在为研究者在具体科学问题与资源条件约束下,如何规范化选择与应用IDD动物模型提供一套系统化、标准化的方法学框架,以期减少研究间的异质性,提升临床前研究成果的转化效率,促进本领域的高质量发展,最终为开发延缓乃至逆转IDD的创新疗法提供坚实的科学基础。
中图分类号:
李忠海,李斌,赵杰,等. 椎间盘退行性病变的临床前研究动物模型选择指南(2025年版)[J]. 实验动物与比较医学, 2025, 45(5): 524-541. DOI: 10.12300/j.issn.1674-5817.2025.048.
LI Zhonghai,LI Bin,ZHAO Jie,et al. Guidelines for Selecting Animal Models in Preclinical Research of Intervertebral Disc Degeneration (2025 Edition)[J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 524-541. DOI: 10.12300/j.issn.1674-5817.2025.048.
| 作者 Authors | 年份 Years | 动物 Animals | 药物及剂量 Medicines & doses | 造模时长/周 Post-induction durations /weeks | 
|---|---|---|---|---|
| Suh等[ | 2022 | 大鼠 | 碘乙酸钠(sodium iodoacetate) 4 mg | 6 | 
| Sudo等[ | 2021 | 兔 | 碘乙酸钠(sodium iodoacetate) 1 mg | 12 | 
| Borem等[ | 2021 | 绵羊 | 软骨素酶(chondroitinase ABC) 1 U | 17 | 
| Zhang等[ | 2020 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 | 
| Gullbrand等[ | 2017 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 | 
| Zamora等[ | 2017 | 山羊 | 1a型痤疮丙酸杆菌(strain 1a Propionibacterium acnes)5 μL (1×107 CFU/μL) | 12 | 
| Shan等[ | 2017 | 兔 | 痤疮丙酸杆菌(Propionibacterium acnes)100 μL (1.6×107 CFU/mL) | 36 | 
| Yuan等[ | 2015 | 大鼠 | 无水乙醇(absolute ethanol) 30 μL | 16 | 
| Kang等[ | 2015 | 猪 | 肿瘤坏死因子-α(TNF-α) 50/100 ng | 12 | 
| Liu等[ | 2013 | 兔 | 1 μmol/L N端30 kDa纤连蛋白片段(N-terminal 30 kDa fibronectin fragment, Fn-f)25 μL | 16 | 
| Hoogendoo等[ | 2008 | 山羊 | 软骨素酶(chondroitinase ABC) 0.035 U(0.25 U/mL) | 26 | 
| Zhou等[ | 2007 | 绵羊 | 5-溴脱氧尿苷(5-bromodeoxyuridine, BrdU)4~5 mg | 14 | 
表1 向椎间盘注射化学药物诱导IDD的研究信息列表
Table 1 Research information on inducing IDD by intradiscal chemical injection
| 作者 Authors | 年份 Years | 动物 Animals | 药物及剂量 Medicines & doses | 造模时长/周 Post-induction durations /weeks | 
|---|---|---|---|---|
| Suh等[ | 2022 | 大鼠 | 碘乙酸钠(sodium iodoacetate) 4 mg | 6 | 
| Sudo等[ | 2021 | 兔 | 碘乙酸钠(sodium iodoacetate) 1 mg | 12 | 
| Borem等[ | 2021 | 绵羊 | 软骨素酶(chondroitinase ABC) 1 U | 17 | 
| Zhang等[ | 2020 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 | 
| Gullbrand等[ | 2017 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 | 
| Zamora等[ | 2017 | 山羊 | 1a型痤疮丙酸杆菌(strain 1a Propionibacterium acnes)5 μL (1×107 CFU/μL) | 12 | 
| Shan等[ | 2017 | 兔 | 痤疮丙酸杆菌(Propionibacterium acnes)100 μL (1.6×107 CFU/mL) | 36 | 
| Yuan等[ | 2015 | 大鼠 | 无水乙醇(absolute ethanol) 30 μL | 16 | 
| Kang等[ | 2015 | 猪 | 肿瘤坏死因子-α(TNF-α) 50/100 ng | 12 | 
| Liu等[ | 2013 | 兔 | 1 μmol/L N端30 kDa纤连蛋白片段(N-terminal 30 kDa fibronectin fragment, Fn-f)25 μL | 16 | 
| Hoogendoo等[ | 2008 | 山羊 | 软骨素酶(chondroitinase ABC) 0.035 U(0.25 U/mL) | 26 | 
| Zhou等[ | 2007 | 绵羊 | 5-溴脱氧尿苷(5-bromodeoxyuridine, BrdU)4~5 mg | 14 | 
| IDD 模型 IDD models | 优点 Advantages | 缺点 Disadvantages | 饲养成本 Husbandry costs | 造模成本 Modeling costs | 适用情况 Applicability | 
|---|---|---|---|---|---|
| 纤维环损伤模型 Annulus fibrosus injury model | 操作简便,重复性高; 退变程度可控; 造模时间短 | 人为损伤,与人类自然退变过程存在差异; 可能引起急性炎症反应 | 低 | 低 | 研究急性损伤后的生物学变化; 评估短期干预效果 风险提示:该模型退变机制与人类自然过程存在差异,临床外推需谨慎 | 
| 髓核损伤模型 Nucleus pulposus injury model | 可特异性损伤髓核细胞;退变程度可控 | 化学试剂可能引起非特异性损伤; 注射过程可能损伤纤维环;手术复杂度较高; 可能引起椎间盘结构不稳定 | 低 | 中 | 研究髓核细胞在退变中的作用; 探讨化学因素的影响 风险提示:化学损伤机制与人类病理不完全一致,药效外推有限 | 
| 终板损伤模型 Vertebral endplate injury model | 模拟营养供应不足导致的退变; 与人类退变机制相似 | 手术操作复杂; 可能影响周围骨组织 | 低 | 中 | 研究终板在退变中的作用; 探讨椎间盘营养供应的影响 风险提示:部分动物骨-软骨结构与人类不同,影响结果解释和转化 | 
| 尾部压缩模型 Caudal disc compression model | 模拟机械力失衡导致的退变; 操作相对简便 | 鼠尾椎与人类腰椎差异较大; 专用设备成本高 | 低 | 中 | 研究机械负荷对退变的影响; 探讨力学因素的致病机制 风险提示:解剖结构与人类有别,机械响应差异影响外推 | 
| 双足直立模型 Bipedal standing model | 模拟人类直立行走的生物力学环境; 腰椎受力更接近人类 | 对动物应激大[如行为改变、体重下降、血清皮质酮(CORT)水平升高等],存在伦理问题; 操作复杂,需要特殊设备 | 低 | 高 | 研究直立姿势对退变的影响; 探讨长期轴向负荷的作用 风险提示:动物应激反应强,长期结局与人类尚存差异 | 
| 腰椎不稳模型 Lumbar instability model | 模拟脊柱稳定性下降导致的退变; 未直接损伤椎间盘结构 | 手术操作复杂,创伤大; 退变过程较慢,需较长实验周期 | 低 | 高 | 研究脊柱稳定性与退变的关系; 探讨相邻节段退变机制 风险提示:手术创伤及愈合过程与人类不同,临床转化需谨慎 | 
| 自发性退变模型 Spontaneous disc degeneration model | 最接近人类自然退变过程; 无人为干预,避免了操作干扰 | 退变过程缓慢,周期长; 个体差异大,结果可变性高 | 高 | 低 | 研究年龄相关的退变机制; 长期疗效评估 风险提示:动物寿命及生理代谢与人类有差异,长期转化存在局限 | 
| 基因修饰模型 Genetically modified model | 可研究特定基因在退变中的作用; 模拟遗传性退变过程 | 操作复杂,成本高; 可能引起全身性影响,存在混杂因素 | 高 | 高 | 研究基因功能和信号通路; 探索基因治疗的潜在靶点 风险提示:遗传背景与人类差异大,部分表型转化有限 | 
表 2 不同IDD动物模型的综合比较:优缺点及适用情况
Table 2 Comparative analysis of different IDD animal models: advantages, disadvantages, and applicability
| IDD 模型 IDD models | 优点 Advantages | 缺点 Disadvantages | 饲养成本 Husbandry costs | 造模成本 Modeling costs | 适用情况 Applicability | 
|---|---|---|---|---|---|
| 纤维环损伤模型 Annulus fibrosus injury model | 操作简便,重复性高; 退变程度可控; 造模时间短 | 人为损伤,与人类自然退变过程存在差异; 可能引起急性炎症反应 | 低 | 低 | 研究急性损伤后的生物学变化; 评估短期干预效果 风险提示:该模型退变机制与人类自然过程存在差异,临床外推需谨慎 | 
| 髓核损伤模型 Nucleus pulposus injury model | 可特异性损伤髓核细胞;退变程度可控 | 化学试剂可能引起非特异性损伤; 注射过程可能损伤纤维环;手术复杂度较高; 可能引起椎间盘结构不稳定 | 低 | 中 | 研究髓核细胞在退变中的作用; 探讨化学因素的影响 风险提示:化学损伤机制与人类病理不完全一致,药效外推有限 | 
| 终板损伤模型 Vertebral endplate injury model | 模拟营养供应不足导致的退变; 与人类退变机制相似 | 手术操作复杂; 可能影响周围骨组织 | 低 | 中 | 研究终板在退变中的作用; 探讨椎间盘营养供应的影响 风险提示:部分动物骨-软骨结构与人类不同,影响结果解释和转化 | 
| 尾部压缩模型 Caudal disc compression model | 模拟机械力失衡导致的退变; 操作相对简便 | 鼠尾椎与人类腰椎差异较大; 专用设备成本高 | 低 | 中 | 研究机械负荷对退变的影响; 探讨力学因素的致病机制 风险提示:解剖结构与人类有别,机械响应差异影响外推 | 
| 双足直立模型 Bipedal standing model | 模拟人类直立行走的生物力学环境; 腰椎受力更接近人类 | 对动物应激大[如行为改变、体重下降、血清皮质酮(CORT)水平升高等],存在伦理问题; 操作复杂,需要特殊设备 | 低 | 高 | 研究直立姿势对退变的影响; 探讨长期轴向负荷的作用 风险提示:动物应激反应强,长期结局与人类尚存差异 | 
| 腰椎不稳模型 Lumbar instability model | 模拟脊柱稳定性下降导致的退变; 未直接损伤椎间盘结构 | 手术操作复杂,创伤大; 退变过程较慢,需较长实验周期 | 低 | 高 | 研究脊柱稳定性与退变的关系; 探讨相邻节段退变机制 风险提示:手术创伤及愈合过程与人类不同,临床转化需谨慎 | 
| 自发性退变模型 Spontaneous disc degeneration model | 最接近人类自然退变过程; 无人为干预,避免了操作干扰 | 退变过程缓慢,周期长; 个体差异大,结果可变性高 | 高 | 低 | 研究年龄相关的退变机制; 长期疗效评估 风险提示:动物寿命及生理代谢与人类有差异,长期转化存在局限 | 
| 基因修饰模型 Genetically modified model | 可研究特定基因在退变中的作用; 模拟遗传性退变过程 | 操作复杂,成本高; 可能引起全身性影响,存在混杂因素 | 高 | 高 | 研究基因功能和信号通路; 探索基因治疗的潜在靶点 风险提示:遗传背景与人类差异大,部分表型转化有限 | 
| [1] | STUBBS B, KOYANAGI A, THOMPSON T, et al. The epidemiology of back pain and its relationship with depression, psychosis, anxiety, sleep disturbances, and stress sensitivity: Data from 43 low- and middle-income countries[J]. Gen Hosp Psychiatry, 2016, 43:63-70. DOI:10.1016/j.genhosppsych.2016.09.008 . | 
| [2] | SHMAGEL A, FOLEY R, IBRAHIM H. Epidemiology of chronic low back pain in US adults: data from the 2009-2010 national health and nutrition examination survey[J]. Arthritis Care Res, 2016, 68(11):1688-1694. DOI:10.1002/acr.22890 . | 
| [3] | TERAGUCHI M, YOSHIMURA N, HASHIZUME H, et al. Progression, incidence, and risk factors for intervertebral disc degeneration in a longitudinal population-based cohort: the Wakayama Spine Study[J]. Osteoarthritis Cartilage, 2017, 25(7):1122-1131. DOI:10.1016/j.joca.2017.01.001 . | 
| [4] | CHEUNG K M C, KARPPINEN J, CHAN D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J]. Spine, 2009, 34(9):934-940. DOI:10.1097/BRS.0b013e3181a01b3f . | 
| [5] | ROUSSOULY P, NNADI C. Sagittal plane deformity: an overview of interpretation and management[J]. Eur Spine J, 2010, 19(11):1824-1836. DOI:10.1007/s00586-010-1476-9 . | 
| [6] | BARREY C, ROUSSOULY P, PERRIN G, et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms?[J]. Eur Spine J, 2011, 20():626-633. DOI:10.1007/s00586-011-1930-3 . | 
| [7] | ALINI M, EISENSTEIN S M, ITO K, et al. Are animal models useful for studying human disc disorders/degeneration?[J]. Eur Spine J, 2008, 17(1):2-19. DOI:10.1007/s00586-007-0414-y . | 
| [8] | SINGH K, MASUDA K, AN H S. Animal models for human disc degeneration[J]. Spine J, 2005, 5(6 ):267S-279S. DOI:10.1016/j.spinee.2005.02.016 . | 
| [9] | MERN D S, WALSEN T, BEIERFUß A, et al. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases[J]. Exp Biol Med, 2021, 246(4):483-512. DOI:10.1177/1535370220969123 . | 
| [10] | GOEL S A, VARGHESE V, DEMIR T. Animal models of spinal injury for studying back pain and SCI[J]. J Clin Orthop Trauma, 2020, 11(5):816-821. DOI:10.1016/j.jcot.2020.07.004 . | 
| [11] | CHEN X, CHEN H K, LI B L, et al. Dynamic elastic modulus assessment of the early degeneration model of an intervertebral disc in Cynomolgus monkeys with one strike loading[J]. Comput Methods Programs Biomed, 2022, 224:106982. DOI:10.1016/j.cmpb.2022.106982 . | 
| [12] | WANG Y D, KANG J H, GUO X D, et al. Intervertebral disc degeneration models for pathophysiology and regenerative therapy-benefits and limitations[J]. J Invest Surg, 2022, 35(4):935-952. DOI:10.1080/08941939.2021.1953640 . | 
| [13] | LEE N N, KRAMER J S, STOKER A M, et al. Canine models of spine disorders[J]. JOR Spine, 2020, 3(4): e1109. DOI:10.1002/jsp2.1109 . | 
| [14] | POLETTO D L, CROWLEY J D, TANGLAY O, et al. Preclinical in vivo animal models of intervertebral disc degeneration. Part 1: a systematic review[J]. JOR Spine, 2022, 6(1): e1234. DOI:10.1002/jsp2.1234 . | 
| [15] | AN H S, MASUDA K. Relevance of in vitro and in vivo models for intervertebral disc degeneration[J]. J Bone Joint Surg Am, 2006, 88():88-94. DOI:10.2106/JBJS.E.01272 . | 
| [16] | ELLIOTT D M, SARVER J J. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc[J]. Spine, 2004, 29(7):713-722. DOI:10.1097/01.brs.0000116982.19331.ea . | 
| [17] | O'CONNELL G D, VRESILOVIC E J, ELLIOTT D M. Comparison of animals used in disc research to human lumbar disc geometry[J]. Spine, 2007, 32(3):328-333. DOI:10.1097/01.brs.0000253961.40910.c1 . | 
| [18] | HOOGENDOORN R W, LU Z F, KROEZE R J, et al. Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future[J]. J Cell Mol Med, 2008, 12(6A):2205-2216. DOI:10.1111/j.1582-4934.2008.00291.x . | 
| [19] | MIYAZAKI T, KOBAYASHI S, TAKENO K, et al. A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders?[J]. Tissue Eng Part A, 2009, 15(12):3835-3846. DOI:10.1089/ten.tea.2009.0250 . | 
| [20] | SHENG S R, WANG X Y, XU H Z, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review[J]. Eur Spine J, 2010, 19(1):46-56. DOI:10.1007/s00586-009-1192-5 . | 
| [21] | KEY J A, FORD L T. Experimental intervertebral-disc lesions[J]. J Bone Joint Surg Am, 1948, 30A(3):621-630. | 
| [22] | GUO Q, ZHU D, WANG Y, et al. Targeting STING attenuates ROS induced intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2021, 29(8):1213-1224. DOI:10.1016/j.joca.2021.04.017 . | 
| [23] | XIAO L, XU S J, LIU C, et al. Sod2 and catalase improve pathological conditions of intervertebral disc degeneration by modifying human adipose-derived mesenchymal stem cells[J]. Life Sci, 2021, 267:118929. DOI:10.1016/j.lfs.2020.118929 . | 
| [24] | ASHINSKY B G, GULLBRAND S E, BONNEVIE E D, et al. Multiscale and multimodal structure-function analysis of intervertebral disc degeneration in a rabbit model[J]. Osteoarthritis Cartilage, 2019, 27(12):1860-1869. DOI:10.1016/j.joca.2019.07.016 . | 
| [25] | PIAZZA M, PECK S H, GULLBRAND S E, et al. Quantitative MRI correlates with histological grade in a percutaneous needle injury mouse model of disc degeneration[J]. J Orthop Res, 2018, 36(10):2771-2779. DOI:10.1002/jor.24028 . | 
| [26] | LEI T, ZHANG Y, ZHOU Q, et al. A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits[J]. Am J Transl Res, 2017, 9(3):900 -909. | 
| [27] | MOSS I L, ZHANG Y J, SHI P, et al. Retroperitoneal approach to the intervertebral disc for the annular puncture model of intervertebral disc degeneration in the rabbit[J]. Spine J, 2013, 13(3):229-234. DOI:10.1016/j.spinee.2012.02.028 . | 
| [28] | WANG Y, WU Y, DENG M Y, et al. Establishment of a rabbit intervertebral disc degeneration model by percutaneous posterolateral puncturing of lumbar discs under local anesthesia[J]. World Neurosurg, 2021, 154: e830-e837. DOI:10.1016/j.wneu.2021.08.024 . | 
| [29] | HUANG Y L, WANG L, LUO B F, et al. Associations of lumber disc degeneration with paraspinal muscles myosteatosis in discogenic low back pain[J]. Front Endocrinol, 2022, 13:891088. DOI:10.3389/fendo.2022.891088 . | 
| [30] | LUO T D, MARQUEZ-LARA A, ZABARSKY Z K, et al. A percutaneous, minimally invasive annulus fibrosus needle puncture model of intervertebral disc degeneration in rabbits[J]. J Orthop Surg, 2018, 26(3):2309499018792715. DOI:10.1177/2309499018792715 . | 
| [31] | BALDIA M, MANI S, WALTER N, et al. Development of a unique mouse intervertebral disc degeneration model using a simple novel tool[J]. Asian Spine J, 2021, 15(4):415-423. DOI:10.31616/asj.2020.0366 . | 
| [32] | QIAN J L, GE J, YAN Q, et al. Selection of the optimal puncture needle for induction of a rat intervertebral disc degeneration model[J]. Pain Physician, 2019, 22(4):353-360. | 
| [33] | MASUDA K, AOTA Y, MUEHLEMAN C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine, 2005, 30(1):5-14. DOI:10.1097/01.brs.0000148152.04401.20 . | 
| [34] | SOBAJIMA S, KOMPEL J F, KIM J S, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology[J]. Spine, 2005, 30(1):15-24. DOI:10.1097/01.brs.0000148048.15348.9b . | 
| [35] | XI Y M, KONG J, LIU Y, et al. Minimally invasive induction of an early lumbar disc degeneration model in Rhesus monkeys[J]. Spine, 2013, 38(10): E579-E586. DOI:10.1097/BRS.0b013e31828b695b . | 
| [36] | TIAN Z Z, MA X Y, YASEN M, et al. Intervertebral disc degeneration in a percutaneous mouse tail injury model[J]. Am J Phys Med Rehabil, 2018, 97(3):170-177. DOI:10.1097/PHM.0000000000000818 . | 
| [37] | KIM K S, YOON S T, LI J, et al. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models[J]. Spine, 2005, 30(1):33-37. DOI:10.1097/01.brs.0000149191.02304.9b . | 
| [38] | TIAN T, WANG H D, LI Z H, et al. Intervertebral disc degeneration induced by needle puncture and ovariectomy: a rat coccygeal model[J]. Biomed Res Int, 2021, 2021:5510124. DOI:10.1155/2021/5510124 . | 
| [39] | CHEN D H, XIA D D, PAN Z Y, et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo [J]. Cell Death Dis, 2016, 7(10): e2441. DOI:10.1038/cddis.2016.334 . | 
| [40] | TANG Z H, HU B, ZANG F Z, et al. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration[J]. Cell Death Dis, 2019, 10(7):510. DOI:10.1038/s41419-019-1701-3 . | 
| [41] | KOBORI S, MIYAGI M, ORITA S, et al. Inhibiting IκB kinase-β downregulates inflammatory cytokines in injured discs and neuropeptides in dorsal root Ganglia innervating injured discs in rats[J]. Spine, 2014, 39(15):1171-1177. DOI:10.1097/BRS.0000000000000374 . | 
| [42] | LIU Y, LIN J Y, WU X X, et al. Aspirin-mediated attenuation of intervertebral disc degeneration by ameliorating reactive oxygen species in vivo and in vitro [J]. Oxid Med Cell Longev, 2019, 2019:7189854. DOI:10.1155/2019/7189854 . | 
| [43] | SUH H R, CHO H Y, HAN H C. Development of a novel model of intervertebral disc degeneration by the intradiscal application of monosodium iodoacetate (MIA) in rat[J]. Spine J, 2022, 22(1):183-192. DOI:10.1016/j.spinee.2021.06.008 . | 
| [44] | SUDO T, AKEDA K, KAWAGUCHI K, et al. Intradiscal injection of monosodium iodoacetate induces intervertebral disc degeneration in an experimental rabbit model[J]. Arthritis Res Ther, 2021, 23(1):297. DOI:10.1186/s13075-021-02686-6 . | 
| [45] | YUAN W, CHE W, JIANG Y Q, et al. Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail[J]. Spine J, 2015, 15(5):1050-1059. DOI:10.1016/j.spinee.2015.01.026 . | 
| [46] | ZHANG C H, GULLBRAND S E, SCHAER T P, et al. Inflammatory cytokine and catabolic enzyme expression in a goat model of intervertebral disc degeneration[J]. J Orthop Res, 2020, 38(11):2521-2531. DOI:10.1002/jor.24639 . | 
| [47] | GULLBRAND S E, MALHOTRA N R, SCHAER T P, et al. A large animal model that recapitulates the spectrum of human intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2017, 25(1):146-156. DOI:10.1016/j.joca.2016.08.006 . | 
| [48] | MAO H J, CHEN Q X, HAN B, et al. The effect of injection volume on disc degeneration in a rat tail model[J]. Spine, 2011, 36(16): E1062-E1069. DOI:10.1097/BRS.0b013e3182027d42 . | 
| [49] | LIN Y Z, JIAO Y C, YUAN Y, et al. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway[J]. Emerg Microbes Infect, 2018, 7(1):1. DOI:10.1038/s41426-017-0002-0 . | 
| [50] | ZAMORA T, PALMA J, ANDIA M, et al. Effect of Propionibacterium acnes (PA) injection on intervertebral disc degeneration in a rat model: Does it mimic modic changes?[J]. Orthop Traumatol Surg Res, 2017, 103(5):795-799. DOI:10.1016/j.otsr.2017.04.005 . | 
| [51] | SHAN Z, ZHANG X Y, LI S Y, et al. Propionibacterium acnes incubation in the discs can result in time-dependent modic changes: a long-term rabbit model[J]. Spine, 2017, 42(21):1595-1603. DOI:10.1097/BRS.0000000000002192 . | 
| [52] | BOREM R, WALTERS J, MADELINE A, et al. Characterization of chondroitinase-induced lumbar intervertebral disc degeneration in a sheep model intended for assessing biomaterials[J]. J Biomed Mater Res A, 2021, 109(7):1232-1246. DOI:10.1002/jbm.a.37117 . | 
| [53] | KANG R, LI H S, RICKERS K, et al. Intervertebral disc degenerative changes after intradiscal injection of TNF-α in a porcine model[J]. Eur Spine J, 2015, 24(9):2010-2016. DOI:10.1007/s00586-015-3926-x . | 
| [54] | LIU H F, ZHANG H, QIAO G X, et al. A novel rabbit disc degeneration model induced by fibronectin fragment[J]. Joint Bone Spine, 2013, 80(3):301-306. DOI:10.1016/j.jbspin. 2012.07.009 . | 
| [55] | HOOGENDOORN R J W, HELDER M N, KROEZE R J, et al. Reproducible long-term disc degeneration in a large animal model[J]. Spine, 2008, 33(9):949-954. DOI:10.1097/BRS.0b013e31816c90f0 . | 
| [56] | ZHOU H W, HOU S X, SHANG W L, et al. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology[J]. Spine, 2007, 32(8):864-872. DOI:10.1097/01.brs.0000259835.31062.3d . | 
| [57] | SHI C G, DAS V, LI X, et al. Development of an in vivo mouse model of discogenic low back pain[J]. J Cell Physiol, 2018, 233(10):6589-6602. DOI:10.1002/jcp.26280 . | 
| [58] | FLOUZAT-LACHANIETTE C H, JULLIEN N, BOUTHORS C, et al. A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury[J]. Int Orthop, 2018, 42(9):2263-2272. DOI:10.1007/s00264-018-3971-2 . | 
| [59] | SU Q H, CAI Q C, LI Y C, et al. A novel rat model of vertebral inflammation-induced intervertebral disc degeneration mediated by activating cGAS/STING molecular pathway[J]. J Cell Mol Med, 2021, 25(20):9567-9585. DOI:10.1111/jcmm.16898 . | 
| [60] | WEI F X, ZHONG R, PAN X M, et al. Computed tomography-guided sub-end plate injection of pingyangmycin for a novel rabbit model of slowly progressive disc degeneration[J]. Spine J, 2019, 19(2): e6-e18. DOI:10.1016/j.spinee.2015.04.004 . | 
| [61] | WEI F X, ZHONG R, ZHOU Z Y, et al. In vivo experimental intervertebral disc degeneration induced by bleomycin in the Rhesus monkey[J]. BMC Musculoskelet Disord, 2014, 15:340. DOI:10.1186/1471-2474-15-340 . | 
| [62] | JIN Y M, MAO G F, YANG C, et al. Establishment of a new model of lumbar intervertebral disc degeneration with pathological characteristics[J]. Global Spine J, 2023, 13(4):984-994. DOI:10.1177/21925682211012323 . | 
| [63] | LONNER B S, TOOMBS C S, MECHLIN M, et al. MRI screening in operative scheuermann kyphosis: is it necessary?[J]. Spine Deform, 2017, 5(2):124-133. DOI:10.1016/j.jspd.2016.10.008 . | 
| [64] | LONNER B S, REN Y, UPASANI V V, et al. Disc degeneration in unfused caudal motion segments ten years following surgery for adolescent idiopathic scoliosis[J]. Spine Deform, 2018, 6(6):684-690. DOI:10.1016/j.jspd.2018.03.013 . | 
| [65] | YURUBE T, HIRATA H, ITO M, et al. Involvement of autophagy in rat tail static compression-induced intervertebral disc degeneration and notochordal cell disappearance[J]. Int J Mol Sci, 2021, 22(11):5648. DOI:10.3390/ijms22115648 .. | 
| [66] | LIU Z C, ZHOU Q, ZHENG J C, et al. A novel in vivo mouse intervertebral disc degeneration model induced by compressive suture[J]. Exp Cell Res, 2021, 398(1):112359. DOI:10.1016/j.yexcr.2020.112359 . | 
| [67] | JI Y C, ZHU P F, ZHANG L L, et al. A novel rat tail disc degeneration model induced by static bending and compression[J]. Animal Model Exp Med, 2021, 4(3):261-267. DOI:10.1002/ame2.12178 . | 
| [68] | NORCROSS J P, LESTER G E, WEINHOLD P, et al. An in vivo model of degenerative disc disease[J]. J Orthop Res, 2003, 21(1):183-188. DOI:10.1016/S0736-0266(02)00098-0 . | 
| [69] | CHING C T S, CHOW D H K, YAO F Y D, et al. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model[J]. Med Eng Phys, 2004, 26(7):587-594. DOI:10.1016/j.medengphy. 2004. 03.006 . | 
| [70] | YAO W, JEE W S, CHEN J, et al. Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy-induced bone loss and added bone to intact rats[J]. J Bone Miner Res, 2000, 15(6):1158-1168. DOI:10.1359/jbmr.2000. 15.6.1158 . | 
| [71] | GOFF C W, LANDMESSER W. Bipedal rats and mice; laboratory animals for orthopaedic research[J]. J Bone Joint Surg Am, 1957, 39-A(3):616-622. | 
| [72] | AO X, WANG L, SHAO Y, et al. Development and characterization of a novel bipedal standing mouse model of intervertebral disc and facet joint degeneration[J]. Clin Orthop Relat Res, 2019, 477(6):1492-1504. DOI:10.1097/CORR.0000000000000712 . | 
| [73] | LIANG X, SHEN H, SHI W D, et al. Effect of axial vertical vibration on degeneration of lumbar intervertebral discs in modified bipedal rats: an in-vivo study[J]. Asian Pac J Trop Med, 2017, 10(7):714-717. DOI:10.1016/j.apjtm.2017.07.014 . | 
| [74] | BAI X D, WANG D L, ZHOU M Y, et al. Noninvasive cumulative axial load may induce intervertebral disc degeneration-a potential rabbit model[J]. Exp Ther Med, 2017, 13(4):1438-1446. DOI:10.3892/etm.2017.4148 . | 
| [75] | LAO Y J, XU T T, JIN H T, et al. Accumulated spinal axial biomechanical loading induces degeneration in inter-vertebral disc of mice lumbar spine[J]. Orthop Surg, 2018, 10(1):56-63. DOI:10.1111/os.12365 . | 
| [76] | MIYAMOTO S, YONENOBU K, ONO K. Experimental cervical spondylosis in the mouse[J]. Spine, 1991, 16(10 ): S495-S500. DOI:10.1097/00007632-199110001-00008 . | 
| [77] | LIU S F, SUN Y L, DONG J C, et al. A mouse model of lumbar spine instability[J]. J Vis Exp, 2021(170): (170). DOI:10.3791/61722 . | 
| [78] | OICHI T, TANIGUCHI Y, SOMA K, et al. A mouse intervertebral disc degeneration model by surgically induced instability[J]. Spine, 2018, 43(10): E557-E564. DOI:10.1097/BRS.0000000000002427 . | 
| [79] | FU F D, BAO R H, YAO S, et al. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth[J]. Sci Rep, 2021, 11(1):772. DOI:10.1038/s41598-020-80756-6 . | 
| [80] | HEI L, GE Z H, YUAN W Q, et al. Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage[J]. Neurol Res, 2021, 43(6):447-457. DOI:10.1080/01616412. 2020.1866804 . | 
| [81] | WANG T, PELLETIER M H, CHRISTOU C, et al. A novel in vivo large animal model of lumbar spinal joint degeneration[J]. Spine J, 2018, 18(10):1896-1909. DOI:10.1016/j.spinee. 2018.05.022 . | 
| [82] | SILBERBERG R. Histologic and morphometric observations on vertebral bone of aging sand rats[J]. Spine, 1988, 13(2):202-208. DOI:10.1097/00007632-198802000-00013 . | 
| [83] | GRUBER H E, JOHNSON T, NORTON H J, et al. The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses[J]. Spine, 2002, 27(3):230-234. DOI:10.1097/00007632-200202010-00004 . | 
| [84] | OHNISHI T, SUDO H, TSUJIMOTO T, et al. Age-related spontaneous lumbar intervertebral disc degeneration in a mouse model[J]. J Orthop Res, 2018, 36(1):224-232. DOI:10.1002/jor.23634 . | 
| [85] | ZHANG Y G, SUN Z M, LIU J T, et al. Features of intervertebral disc degeneration in rat's aging process[J]. J Zhejiang Univ Sci B, 2009, 10(7):522-527. DOI:10.1631/jzus.B0820295 . | 
| [86] | CHOI H, TESSIER S, SILAGI E S, et al. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis[J]. Matrix Biol, 2018, 70:102-122. DOI:10.1016/j.matbio.2018.03.019 . | 
| [87] | BOUHSINA N, DECANTE C, HARDEL J B, et al. Correlation between magnetic resonance, X-ray imaging alterations and histological changes in an ovine model of age-related disc degeneration[J]. Eur Cell Mater, 2021, 42:166-178. DOI:10.22203/eCM.v042a13 . | 
| [88] | MARFIA G, CAMPANELLA R, NAVONE S E, et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration[J]. Arthritis Res Ther, 2014, 16(5):457. DOI:10.1186/s13075-014-0457-5 . | 
| [89] | LEE S, JANG S H, SUZUKI-NARITA M, et al. Voluntary running attenuates behavioural signs of low back pain: dimorphic regulation of intervertebral disc inflammation in male and female SPARC-null mice[J]. Osteoarthritis Cartilage, 2022, 30(1):110-123. DOI:10.1016/j.joca.2021.06.014 . | 
| [90] | GRUBER H E, SAGE E H, NORTON H J, et al. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse[J]. J Histochem Cytochem, 2005, 53(9):1131-1138. DOI:10.1369/jhc.5A6687.2005 . | 
| [91] | HEY H W D, LAM W M R, CHAN C X, et al. Paraspinal myopathy-induced intervertebral disc degeneration and thoracolumbar kyphosis in TSC1mKO mice model-a preliminary study[J]. Spine J, 2022, 22(3):483-494. DOI:10.1016/j.spinee.2021.09.003 . | 
| [92] | ASZÓDI A, CHAN D, HUNZIKER E, et al. Collagen Ⅱ is essential for the removal of the notochord and the formation of intervertebral discs[J]. J Cell Biol, 1998, 143(5):1399-1412. DOI:10.1083/jcb.143.5.1399 . | 
| [93] | SAHLMAN J, INKINEN R, HIRVONEN T, et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type Ⅱ collagen[J]. Spine, 2001, 26(23):2558-2565. DOI:10.1097/00007632-200112010-00008 . | 
| [94] | XU H H, DONG R, ZENG Q H, et al. Col9a2 gene deletion accelerates the degeneration of intervertebral discs[J]. Exp Ther Med, 2022, 23(3):207. DOI:10.3892/etm.2022.11130 . | 
| [95] | BOYD L M, RICHARDSON W J, ALLEN K D, et al. Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type Ⅸ collagen[J]. Arthritis Rheum, 2008, 58(1):164-171. DOI:10.1002/art.23231 . | 
| [96] | HAMRICK M W, PENNINGTON C, BYRON C D. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin)[J]. J Orthop Res, 2003, 21(6):1025-1032. DOI:10.1016/S0736-0266(03)00105-0 . | 
| [97] | BEIERFUß A, DIETRICH H, KREMSER C, et al. Knockout of Apolipoprotein E in rabbit promotes premature intervertebral disc degeneration: a new in vivo model for therapeutic approaches of spinal disc disorders[J]. PLoS One, 2017, 12(11): e0187564. DOI:10.1371/journal.pone.0187564 . | 
| [98] | BEIERFUß A, HUNJADI M, RITSCH A, et al. APOE-knockout in rabbits causes loss of cells in nucleus pulposus and enhances the levels of inflammatory catabolic cytokines damaging the intervertebral disc matrix[J]. PLoS One, 2019, 14(11): e0225527. DOI:10.1371/journal.pone.0225527 . | 
| [99] | LI C G, LIANG Q Q, ZHOU Q, et al. A continuous observation of the degenerative process in the intervertebral disc of Smad3 gene knock-out mice[J]. Spine, 2009, 34(13):1363-1369. DOI:10.1097/BRS.0b013e3181a3c7c7 . | 
| [100] | PHILLIPS K L E, JORDAN-MAHY N, NICKLIN M J H, et al. Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration[J]. Ann Rheum Dis, 2013, 72(11):1860-1867. DOI:10.1136/annrheumdis-2012-202266 . | 
| [101] | WU W J, ZHANG X K, ZHENG X F, et al. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc[J]. Int J Immunopathol Pharmacol, 2013, 26(3):601-609. DOI:10.1177/039463201302600304 . | 
| [102] | LUO Y, ZHANG L, WANG W Y, et al. Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats[J]. Bone, 2013, 55(2):439-448. DOI:10.1016/j.bone.2013.03.002 . | 
| [103] | FENWICK N, GRIFFIN G, GAUTHIER C. The welfare of animals used in science: How the "Three Rs" ethic guides improvements[J]. Can Vet J, 2009, 50(5):523-530. | 
| [104] | ZHOU L B, HUANG J J, LI C, et al. Organoids and organs-on-chips: recent advances, applications in drug development, and regulatory challenges[J]. Med, 2025, 6(4):100667. DOI:10.1016/j.medj.2025.100667 . | 
| [105] | SON H G, HWANG M H, LEE S, et al. Intervertebral disc organ-on-a-chip: an innovative model to study monocyte extravasation during nucleus pulposus degeneration[J]. Lab Chip, 2023, 23(12):2819-2828. DOI:10.1039/d3lc00032j . | 
| [1] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||