Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (6): 560-565.DOI: 10.12300/j.issn.1674-5817.2022.025
• Animal Models of Human Diseases • Previous Articles Next Articles
Shaofeng HUANG1(), Zhong LIN2(
)(
), Xuehong ZHU2, Shuchen LIU1, Li BIN2
Received:
2022-03-04
Revised:
2022-10-21
Online:
2022-12-25
Published:
2022-12-25
Contact:
Zhong LIN
CLC Number:
Shaofeng HUANG,Zhong LIN,Xuehong ZHU,et al. Research Progress in Rat Models of Intrauterine Adhesion[J]. Laboratory Animal and Comparative Medicine, 2022, 42(6): 560-565. DOI: 10.12300/j.issn.1674-5817.2022.025.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.025
动物种类 Animal species | 繁殖能力 Fertility | 生殖周期 Reproductive cycle | 价格 Price | 遗传背景 Genetic background | 操作难度 Operation difficulty | 试验周期 Test cycle |
---|---|---|---|---|---|---|
小鼠 Mouse | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
大鼠 Rat | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
新西兰白兔 New Zealand white rabbit | 生育力强,多产 | 妊娠期长短不定 (32~36 d) | 一般 | 来源明确,基因型稳定 | 易操作 | 短 |
比格犬 Beagle | 季节性繁殖,每窝产仔数相对较少 | 妊娠期约55~65 d,经期约7~14 d | 较高 | 有近亲繁殖因素存在,组织学背景资料不足 | 难操作 | 中等 |
非人灵长类 Non-human primate | 每胎产仔数相对很少 | 妊娠期及经期与人类相近 | 昂贵 | 组织学背景资料不足 | 难操作 | 长 |
Table 1 Characteristics of different experimental animals used in intrauterine adhesion models
动物种类 Animal species | 繁殖能力 Fertility | 生殖周期 Reproductive cycle | 价格 Price | 遗传背景 Genetic background | 操作难度 Operation difficulty | 试验周期 Test cycle |
---|---|---|---|---|---|---|
小鼠 Mouse | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
大鼠 Rat | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
新西兰白兔 New Zealand white rabbit | 生育力强,多产 | 妊娠期长短不定 (32~36 d) | 一般 | 来源明确,基因型稳定 | 易操作 | 短 |
比格犬 Beagle | 季节性繁殖,每窝产仔数相对较少 | 妊娠期约55~65 d,经期约7~14 d | 较高 | 有近亲繁殖因素存在,组织学背景资料不足 | 难操作 | 中等 |
非人灵长类 Non-human primate | 每胎产仔数相对很少 | 妊娠期及经期与人类相近 | 昂贵 | 组织学背景资料不足 | 难操作 | 长 |
造模方法 Modeling methods | 适用情况 Application |
---|---|
机械损伤法 Mechanical damage method | 模拟子宫内膜创伤(包括妊娠相关的内膜创伤或者子宫内手术操作导致的内膜创伤)导致的IUA,用于IUA发病机制、子宫内膜修复方式、预防和治疗方法的探索 |
化学损伤法 Chemical damage method | 大多用于模拟中重度IUA,用于探索不同治疗手段对中重度IUA动物的疗效 |
生物损伤法 Biological damage method | 可模拟感染引起的IUA,用于探索IUA发病机制中的炎症相关标志物或治疗方法 |
联合损伤法 Combined damage method | 可模拟多样化病因的IUA,其中物理机械损伤法+感染模型更切合IUA临床常见病因,且稳定性佳,可用于探索IUA的发病机制、子宫内膜修复方式及各种治疗手段的疗效及长期预后 |
Table 2 Comparison of the application of different methods to establish animal models of intrauterine adhesion
造模方法 Modeling methods | 适用情况 Application |
---|---|
机械损伤法 Mechanical damage method | 模拟子宫内膜创伤(包括妊娠相关的内膜创伤或者子宫内手术操作导致的内膜创伤)导致的IUA,用于IUA发病机制、子宫内膜修复方式、预防和治疗方法的探索 |
化学损伤法 Chemical damage method | 大多用于模拟中重度IUA,用于探索不同治疗手段对中重度IUA动物的疗效 |
生物损伤法 Biological damage method | 可模拟感染引起的IUA,用于探索IUA发病机制中的炎症相关标志物或治疗方法 |
联合损伤法 Combined damage method | 可模拟多样化病因的IUA,其中物理机械损伤法+感染模型更切合IUA临床常见病因,且稳定性佳,可用于探索IUA的发病机制、子宫内膜修复方式及各种治疗手段的疗效及长期预后 |
1 | XIN L, ZHENG X, CHEN J, et al. An acellular scaffold facilitates endometrial regeneration and fertility restoration via recruiting endogenous mesenchymal stem cells[J]. Adv Healthc Mater, 2022: e2201680. DOI:10.1002/adhm.202201680 . |
2 | ZHANG H H, ZHANG Q, ZHANG J, et al. Urinary bladder matrix scaffolds improve endometrial regeneration in a rat model of intrauterine adhesions[J]. Biomater Sci, 2020, 8(3):988-996. DOI:10.1039/C9BM00651F . |
3 | GAN L, DUAN H, XU Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017, 19(5):603-616. DOI:10.1016/j.jcyt.2017. 02.003 . |
4 | PHD H C, MD H L, MD Y H. Interceed and estrogen reduce uterine adhesions and fibrosis and improve endometrial receptivity in a rabbit model of intrauterine adhesions[J]. Reprod Sci, 2016, 23(9):1208-1216. DOI:10.1177/193371911 6632923 . |
5 | 许鑫鑫. 子宫性不孕相关兔宫腔粘连模型及人离体子宫灌注研究[D]. 济南: 山东大学, 2017. |
XU X X. A study on establishment of the rabbit intrauterine adhesions model related to uterine factor infertility and cold extracorporeal perfusion of human uterus[D]. Jinan: Shan-dong University, 2017. | |
6 | 李玲, 单铁英, 刘聿谨, 等. 人经血干细胞移植对宫腔粘连组织中α-SMA、TGF-β1及钙粘蛋白E含量的影响[J].河北医药, 2022, 44(15):2268-2271. |
LI L, SHAN T Y, LIU W J, et al. Effects of human menstrual blood stem cell transplantation on the levels of α-SMA、TGF-β1 and E-cadherin in intrauterine adhesion tissues[J]. Hebei Medical Journal, 2022, 44(15):2268-2271. | |
7 | 陈醒, 毛乐乐, 刁翯, 等. 大鼠子宫腔粘连模型的构建与改进[J]. 解剖学报, 2019, 50(1):123-127. DOI:10.16098/j.issn.0529-1356.2019.01.021 . |
CHEN X, MAO L L, DIAO H, et al. A rat model of intrauterine adhesion established by endometrial scraping[J]. Acta Anat Sin, 2019, 50(1):123-127. DOI:10.16098/j.issn.0529-1356.2019.01.021 . | |
8 | GUO L P, CHEN L M, CHEN F, et al. Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion[J]. Am J Transl Res, 2019, 11(8):4726-4737. |
9 | FENG Q, GAO B, ZHAO X, et al. Establishment of an animal model of intrauterine adhesions after surgical abortion and curettage in pregnant rats[J]. Ann Transl Med, 2020, 8(4):56. DOI:10.21037/atm.2020.01.134 . |
10 | 张斯文. 机械损伤法建立大鼠宫腔粘连模型[C]//2017年第五次世界中西医结合大会论文摘要集(下册). 广州, 2017: 366. DOI: 10.26914/c.cnkihy.2017.003732 . |
ZHANG S W. Establishment of rat model of intrauterine adhesions by mechanical injury [C]//Abstracts of the 5th World Congress of Integrated Traditional and Western Medicine in 2017 (Volume II). Guangzhou, 2017: 366. DOI: 10.26914/c.cnkihy.2017.003732 . | |
11 | XU X X, CAO L B, WANG Z, et al. Creation of a rabbit model for intrauterine adhesions using electrothermal injury[J]. J Zhejiang Univ Sci B, 2018, 19(5):383-389. DOI:10.1631/jzus.b1700086 . |
12 | 郑嘉华, 赵双丹, 亓文博, 等. 两种宫腔粘连大鼠模型稳定性的比较[J]. 中华生殖与避孕杂志, 2021, 41(12): 1115-1123. DOI: 10.3760/cma.j.cn101441-20200506-00261 . |
ZHENG J H, ZHAO S D, QI W B, et al. Exploration of the stability of two rat models of uterine adhesion[J]. Chin J Reprod Contracep, 2021, 41(12): 1115-1123. DOI: 10.3760/cma.j.cn101441-20200506-00261 . | |
13 | 韩华, 薛改, 李洁, 等. 宫腔粘连模型大鼠子宫内膜胞饮突发育和整合素β3表达[J]. 现代妇产科进展, 2017, 26(5):345-348. DOI:10.13283/j.cnki.xdfckjz.2017.05.007 . |
HAN H, XUE G, LI J, et al. The development of pinopodes and expression of integrin beta 3 in the endometrium of rat model of intrauterine adhesion[J]. Prog Obstet Gynecol, 2017, 26(5):345-348. DOI:10.13283/j.cnki.xdfckjz.2017.05.007 . | |
14 | 南楠, 梁敏, 刘婷婷, 等. 乙醇作用时间对大鼠子宫内膜损伤的影响[J]. 生殖医学杂志, 2019, 28(1):66-70. DOI:10.3969/j.issn.1004-3845.2019.01.013 . |
NAN N, LIANG M, LIU T T, et al. Study on the effect of different treating time of ethanol on the endometrial injury in rat[J]. J Reprod Med, 2019, 28(1):66-70. DOI:10.3969/j.issn.1004-3845.2019.01.013 . | |
15 | 孔德胜. 脂肪间充质干细胞治疗大鼠宫腔粘连的疗效评价及机制探讨[D]. 石家庄: 河北医科大学, 2017. |
KONG D S. Evaluation of therapeutic effect of adipose derived mesenchymal stem cells on intrauterine adhesions in rats and its mechanism[D]. Shijiazhuang: Hebei Medical University, 2017. | |
16 | SANTAMARIA X, ISAACSON K, SIMÓN C. Asherman's Syndrome: it may not be all our fault[J]. Hum Reprod, 2018, 33(8):1374-1380. DOI:10.1093/humrep/dey232 . |
17 | 蔡慧华, 何援利, 李慧娟, 等. 宫腔粘连大鼠模型的建立及其与白细胞介素21的相关性分析[J]. 医学研究生学报, 2015, 28(4):346-349. DOI:10.16571/j.cnki.1008-8199.2015.04.007 . |
CAI H L, HE Y L, LI H J, et al. Correlation between interleukin-21 and formation of intrauterine adhesions in rats[J]. J Med Postgra,2015,28(4):346-349. DOI:10.16571/j.cnki.1008-8199.2015.04.007 . | |
18 | KONG D, ZHANG L, XU X, et al. Small intestine submucosa is a potential material for intrauterine adhesions treatment in a rat model[J]. Gynecol Obstet Invest, 2018, 83(5):499-507. DOI:10.1159/000479086 . |
19 | 郭意欣, 关婷. 机械损伤联合不同感染方法建立大鼠宫腔粘连模型的对比研究[J]. 现代妇产科进展, 2018, 27(9):693-695. DOI:10.13283/j.cnki.xdfckjz.2018.09.014 . |
GUO Y X, GUAN T. Comparative study on mechanical injury combined with different infection methods to establish rat intrauterine adhesion model[J]. Prog Obstet Gynecol, 2018, 27(9):693-695. DOI:10.13283/j.cnki.xdfckjz.2018.09.014 . | |
20 | 张永裕, 谭国胜, 罗灿桥, 等. 多重损伤法建立大鼠宫腔粘连模型及其对子宫内膜LIF及整合素ανβ3的影响[J]. 中山大学学报(医学科学版), 2016, 37(1):15-22. DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2016.0003 . |
ZHANG Y Y, TAN G S, LUO C Q, et al. Establishment of rat intrauterine adhesions model by multiple injury and its effect on expression levels of endometrial LIF and integrin ανβ3[J]. J Sun Yat Sen Univ Med Sci, 2016, 37(1):15-22. DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2016.0003 . | |
21 | 刘丹, 帅汝臻, 李娟, 等. 基于病因学的多重损伤法宫腔粘连大鼠模型的建立和评价[J]. 宁夏医科大学学报, 2019, 41(4):373-378. DOI:10.16050/j.cnki.issn1674-6309.2019.04.010 . |
LIU D, SHUAI R Z, LI J, et al. Establishment and evaluation of the intrauterin adhesion rat model fabricated with etiological multi-injury factors[J]. J Ningxia Med Univ, 2019, 41(4):373-378. DOI:10.16050/j.cnki.issn1674-6309.2019.04.010 . | |
22 | XU C, BAO M, FAN X, et al. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions[J]. Reprod Biol Endocrinol, 2022, 20(1):9. DOI:10.1186/s12958-022-00887-5 . |
23 | XUE X, LI X, YAO J, et al. Transient and prolonged activation of Wnt signaling contribute oppositely to the pathogenesis of asherman's syndrome[J]. Int J Mol Sci, 2022, 23(15):8808. DOI:10.3390/ijms23158808 . |
24 | CHENG Y H, TSAI N C, CHEN Y J, et al. Extracorporeal shock wave therapy combined with platelet-rich plasma during preventive and therapeutic stages of intrauterine adhesion in a rat model[J]. Biomedicines, 2022, 10(2):476. DOI:10.3390/biomedicines10020476 . |
25 | LIU N N, ZHAO X, TAN J C, et al. Mycobiome dysbiosis in women with intrauterine adhesions[J]. Microbiol Spectr, 2022, 10(4): e0132422. DOI:10.1128/spectrum.01324-22 . |
26 | CAO J, LIU D, ZHAO S, et al. Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway[J]. Braz J Med Biol Res, 2020, 53(8): e9794. DOI:10.1590/1414-431x20209794 . |
27 | CHEN J X, YI X J, GU P L, et al. The role of KDR in intrauterine adhesions may involve the TGF-β1/Smads signaling pathway[J]. Braz J Med Biol Res, 2019, 52(10): e8324. DOI:10.1590/1414-431x20198324 . |
28 | CHEN Q, NI Y, HAN M, et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression[J]. Am J Transl Res, 2020, 12(6):3011-3022. |
29 | HAMUTOĞLU R, BULUT H E, KALOĞLU C, et al. The regulation of trophoblast invasion and decidual reaction by matrix metalloproteinase-2, metalloproteinase-7, and metalloproteinase-9 expressions in the rat endometrium[J]. Reprod Med Biol, 2020, 19(4):385-397. DOI:10.1002/rmb2.12342 . |
30 | 刘晓丽, 王晶, 陈春林. Smad2、Erk2及NF-kB在宫腔粘连组织中表达的临床研究[J]. 妇产与遗传(电子版), 2017, 7(4):16-20. DOI: 10.3868/j.issn.2095-1558.2017.04.005 . |
LIU X L, WANG J, CHEN C L. The expression of Smad2, Erk2, and NF-kB in endometrium of patient with intrauterine adhesion[J]. Obstet Gynecol Genet (Electronic Edition), 2017, 7(4):16-20. DOI: 10.3868/j.issn.2095-1558.2017.04.005 . | |
31 | 勾亚婷, 张文文, 李长江, 等. NF-κB信号通路在人羊膜间充质干细胞治疗宫腔粘连中的作用[J]. 第三军医大学学报, 2020, 42(11):1101-1108. DOI:10.16016/j.1000-5404.202003065 . |
GOU Y T, ZHANG W W, LI C J, et al. Role of NF-κB signaling pathway in treatment of intrauterine adhesions by human amniotic mesenchymal stem cells[J]. J Third Mil Med Univ, 2020, 42(11):1101-1108. DOI:10.16016/j.1000-5404.202003065 . |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
[3] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[4] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[5] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[6] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
[7] | LIU Liyu, JI Bo, LIU Xiaoxuan, FANG Yang, ZHANG Ling, GUO Tingting, QUAN Ye, LI Hewen, LIU Yitian. Exploration of Rat Fetal Lung Tissue Fixation Methods [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 432-438. |
[8] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
[9] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
[10] | XIAO Linlin, YANG Yixuan, LI Shanshan, LUO Lanshiyu, YIN Siwei, SUN Juming, SHI Wei, OUYANG Yiqiang, LI Xiyi. Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 269-278. |
[11] | TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. |
[12] | HU Min, DONG Lexuan, GAO Yi, XI Ziqi, SHEN Zihao, TANG Ruiyang, LUAN Xin, TANG Min, ZHANG Weidong. Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 318-330. |
[13] | LUO Lianlian, YUAN Yanchun, WANG Junling, SHI Guangsen. Advances in Mouse Models of Amyotrophic Lateral Sclerosis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 290-299. |
[14] | JIANG Meng, HAO Shulan, TONG Liguo, ZHONG Qiming, GAO Zhenfei, WANG Yonghui, WANG Xixing, JI Haijie. Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 251-258. |
[15] | LIU Zhiwei, YANG Ran, LIAN Hao, ZHANG Yu, JIN Lilun. Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 259-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||