Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (6): 560-565.DOI: 10.12300/j.issn.1674-5817.2022.025
• Animal Models of Human Diseases • Previous Articles Next Articles
Shaofeng HUANG1(), Zhong LIN2()(), Xuehong ZHU2, Shuchen LIU1, Li BIN2
Received:
2022-03-04
Revised:
2022-10-21
Online:
2022-12-25
Published:
2023-01-04
Contact:
Zhong LIN
CLC Number:
Shaofeng HUANG, Zhong LIN, Xuehong ZHU, Shuchen LIU, Li BIN. Research Progress in Rat Models of Intrauterine Adhesion[J]. Laboratory Animal and Comparative Medicine, 2022, 42(6): 560-565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.025
动物种类 Animal species | 繁殖能力 Fertility | 生殖周期 Reproductive cycle | 价格 Price | 遗传背景 Genetic background | 操作难度 Operation difficulty | 试验周期 Test cycle |
---|---|---|---|---|---|---|
小鼠 Mouse | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
大鼠 Rat | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
新西兰白兔 New Zealand white rabbit | 生育力强,多产 | 妊娠期长短不定 (32~36 d) | 一般 | 来源明确,基因型稳定 | 易操作 | 短 |
比格犬 Beagle | 季节性繁殖,每窝产仔数相对较少 | 妊娠期约55~65 d,经期约7~14 d | 较高 | 有近亲繁殖因素存在,组织学背景资料不足 | 难操作 | 中等 |
非人灵长类 Non-human primate | 每胎产仔数相对很少 | 妊娠期及经期与人类相近 | 昂贵 | 组织学背景资料不足 | 难操作 | 长 |
Table 1 Characteristics of different experimental animals used in intrauterine adhesion models
动物种类 Animal species | 繁殖能力 Fertility | 生殖周期 Reproductive cycle | 价格 Price | 遗传背景 Genetic background | 操作难度 Operation difficulty | 试验周期 Test cycle |
---|---|---|---|---|---|---|
小鼠 Mouse | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
大鼠 Rat | 生育力强,多产 | 妊娠期及经期短 | 低廉 | 来源明确,基因型稳定 | 易操作 | 短 |
新西兰白兔 New Zealand white rabbit | 生育力强,多产 | 妊娠期长短不定 (32~36 d) | 一般 | 来源明确,基因型稳定 | 易操作 | 短 |
比格犬 Beagle | 季节性繁殖,每窝产仔数相对较少 | 妊娠期约55~65 d,经期约7~14 d | 较高 | 有近亲繁殖因素存在,组织学背景资料不足 | 难操作 | 中等 |
非人灵长类 Non-human primate | 每胎产仔数相对很少 | 妊娠期及经期与人类相近 | 昂贵 | 组织学背景资料不足 | 难操作 | 长 |
造模方法 Modeling methods | 适用情况 Application |
---|---|
机械损伤法 Mechanical damage method | 模拟子宫内膜创伤(包括妊娠相关的内膜创伤或者子宫内手术操作导致的内膜创伤)导致的IUA,用于IUA发病机制、子宫内膜修复方式、预防和治疗方法的探索 |
化学损伤法 Chemical damage method | 大多用于模拟中重度IUA,用于探索不同治疗手段对中重度IUA动物的疗效 |
生物损伤法 Biological damage method | 可模拟感染引起的IUA,用于探索IUA发病机制中的炎症相关标志物或治疗方法 |
联合损伤法 Combined damage method | 可模拟多样化病因的IUA,其中物理机械损伤法+感染模型更切合IUA临床常见病因,且稳定性佳,可用于探索IUA的发病机制、子宫内膜修复方式及各种治疗手段的疗效及长期预后 |
Table 2 Comparison of the application of different methods to establish animal models of intrauterine adhesion
造模方法 Modeling methods | 适用情况 Application |
---|---|
机械损伤法 Mechanical damage method | 模拟子宫内膜创伤(包括妊娠相关的内膜创伤或者子宫内手术操作导致的内膜创伤)导致的IUA,用于IUA发病机制、子宫内膜修复方式、预防和治疗方法的探索 |
化学损伤法 Chemical damage method | 大多用于模拟中重度IUA,用于探索不同治疗手段对中重度IUA动物的疗效 |
生物损伤法 Biological damage method | 可模拟感染引起的IUA,用于探索IUA发病机制中的炎症相关标志物或治疗方法 |
联合损伤法 Combined damage method | 可模拟多样化病因的IUA,其中物理机械损伤法+感染模型更切合IUA临床常见病因,且稳定性佳,可用于探索IUA的发病机制、子宫内膜修复方式及各种治疗手段的疗效及长期预后 |
1 | XIN L, ZHENG X, CHEN J, et al. An acellular scaffold facilitates endometrial regeneration and fertility restoration via recruiting endogenous mesenchymal stem cells[J]. Adv Healthc Mater, 2022: e2201680. DOI:10.1002/adhm.202201680 . |
2 | ZHANG H H, ZHANG Q, ZHANG J, et al. Urinary bladder matrix scaffolds improve endometrial regeneration in a rat model of intrauterine adhesions[J]. Biomater Sci, 2020, 8(3):988-996. DOI:10.1039/C9BM00651F . |
3 | GAN L, DUAN H, XU Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017, 19(5):603-616. DOI:10.1016/j.jcyt.2017. 02.003 . |
4 | PHD H C, MD H L, MD Y H. Interceed and estrogen reduce uterine adhesions and fibrosis and improve endometrial receptivity in a rabbit model of intrauterine adhesions[J]. Reprod Sci, 2016, 23(9):1208-1216. DOI:10.1177/193371911 6632923 . |
5 | 许鑫鑫. 子宫性不孕相关兔宫腔粘连模型及人离体子宫灌注研究[D]. 济南: 山东大学, 2017. |
XU X X. A study on establishment of the rabbit intrauterine adhesions model related to uterine factor infertility and cold extracorporeal perfusion of human uterus[D]. Jinan: Shan-dong University, 2017. | |
6 | 李玲, 单铁英, 刘聿谨, 等. 人经血干细胞移植对宫腔粘连组织中α-SMA、TGF-β1及钙粘蛋白E含量的影响[J].河北医药, 2022, 44(15):2268-2271. |
LI L, SHAN T Y, LIU W J, et al. Effects of human menstrual blood stem cell transplantation on the levels of α-SMA、TGF-β1 and E-cadherin in intrauterine adhesion tissues[J]. Hebei Medical Journal, 2022, 44(15):2268-2271. | |
7 | 陈醒, 毛乐乐, 刁翯, 等. 大鼠子宫腔粘连模型的构建与改进[J]. 解剖学报, 2019, 50(1):123-127. DOI:10.16098/j.issn.0529-1356.2019.01.021 . |
CHEN X, MAO L L, DIAO H, et al. A rat model of intrauterine adhesion established by endometrial scraping[J]. Acta Anat Sin, 2019, 50(1):123-127. DOI:10.16098/j.issn.0529-1356.2019.01.021 . | |
8 | GUO L P, CHEN L M, CHEN F, et al. Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion[J]. Am J Transl Res, 2019, 11(8):4726-4737. |
9 | FENG Q, GAO B, ZHAO X, et al. Establishment of an animal model of intrauterine adhesions after surgical abortion and curettage in pregnant rats[J]. Ann Transl Med, 2020, 8(4):56. DOI:10.21037/atm.2020.01.134 . |
10 | 张斯文. 机械损伤法建立大鼠宫腔粘连模型[C]//2017年第五次世界中西医结合大会论文摘要集(下册). 广州, 2017: 366. DOI: 10.26914/c.cnkihy.2017.003732 . |
ZHANG S W. Establishment of rat model of intrauterine adhesions by mechanical injury [C]//Abstracts of the 5th World Congress of Integrated Traditional and Western Medicine in 2017 (Volume II). Guangzhou, 2017: 366. DOI: 10.26914/c.cnkihy.2017.003732 . | |
11 | XU X X, CAO L B, WANG Z, et al. Creation of a rabbit model for intrauterine adhesions using electrothermal injury[J]. J Zhejiang Univ Sci B, 2018, 19(5):383-389. DOI:10.1631/jzus.b1700086 . |
12 | 郑嘉华, 赵双丹, 亓文博, 等. 两种宫腔粘连大鼠模型稳定性的比较[J]. 中华生殖与避孕杂志, 2021, 41(12): 1115-1123. DOI: 10.3760/cma.j.cn101441-20200506-00261 . |
ZHENG J H, ZHAO S D, QI W B, et al. Exploration of the stability of two rat models of uterine adhesion[J]. Chin J Reprod Contracep, 2021, 41(12): 1115-1123. DOI: 10.3760/cma.j.cn101441-20200506-00261 . | |
13 | 韩华, 薛改, 李洁, 等. 宫腔粘连模型大鼠子宫内膜胞饮突发育和整合素β3表达[J]. 现代妇产科进展, 2017, 26(5):345-348. DOI:10.13283/j.cnki.xdfckjz.2017.05.007 . |
HAN H, XUE G, LI J, et al. The development of pinopodes and expression of integrin beta 3 in the endometrium of rat model of intrauterine adhesion[J]. Prog Obstet Gynecol, 2017, 26(5):345-348. DOI:10.13283/j.cnki.xdfckjz.2017.05.007 . | |
14 | 南楠, 梁敏, 刘婷婷, 等. 乙醇作用时间对大鼠子宫内膜损伤的影响[J]. 生殖医学杂志, 2019, 28(1):66-70. DOI:10.3969/j.issn.1004-3845.2019.01.013 . |
NAN N, LIANG M, LIU T T, et al. Study on the effect of different treating time of ethanol on the endometrial injury in rat[J]. J Reprod Med, 2019, 28(1):66-70. DOI:10.3969/j.issn.1004-3845.2019.01.013 . | |
15 | 孔德胜. 脂肪间充质干细胞治疗大鼠宫腔粘连的疗效评价及机制探讨[D]. 石家庄: 河北医科大学, 2017. |
KONG D S. Evaluation of therapeutic effect of adipose derived mesenchymal stem cells on intrauterine adhesions in rats and its mechanism[D]. Shijiazhuang: Hebei Medical University, 2017. | |
16 | SANTAMARIA X, ISAACSON K, SIMÓN C. Asherman's Syndrome: it may not be all our fault[J]. Hum Reprod, 2018, 33(8):1374-1380. DOI:10.1093/humrep/dey232 . |
17 | 蔡慧华, 何援利, 李慧娟, 等. 宫腔粘连大鼠模型的建立及其与白细胞介素21的相关性分析[J]. 医学研究生学报, 2015, 28(4):346-349. DOI:10.16571/j.cnki.1008-8199.2015.04.007 . |
CAI H L, HE Y L, LI H J, et al. Correlation between interleukin-21 and formation of intrauterine adhesions in rats[J]. J Med Postgra,2015,28(4):346-349. DOI:10.16571/j.cnki.1008-8199.2015.04.007 . | |
18 | KONG D, ZHANG L, XU X, et al. Small intestine submucosa is a potential material for intrauterine adhesions treatment in a rat model[J]. Gynecol Obstet Invest, 2018, 83(5):499-507. DOI:10.1159/000479086 . |
19 | 郭意欣, 关婷. 机械损伤联合不同感染方法建立大鼠宫腔粘连模型的对比研究[J]. 现代妇产科进展, 2018, 27(9):693-695. DOI:10.13283/j.cnki.xdfckjz.2018.09.014 . |
GUO Y X, GUAN T. Comparative study on mechanical injury combined with different infection methods to establish rat intrauterine adhesion model[J]. Prog Obstet Gynecol, 2018, 27(9):693-695. DOI:10.13283/j.cnki.xdfckjz.2018.09.014 . | |
20 | 张永裕, 谭国胜, 罗灿桥, 等. 多重损伤法建立大鼠宫腔粘连模型及其对子宫内膜LIF及整合素ανβ3的影响[J]. 中山大学学报(医学科学版), 2016, 37(1):15-22. DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2016.0003 . |
ZHANG Y Y, TAN G S, LUO C Q, et al. Establishment of rat intrauterine adhesions model by multiple injury and its effect on expression levels of endometrial LIF and integrin ανβ3[J]. J Sun Yat Sen Univ Med Sci, 2016, 37(1):15-22. DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2016.0003 . | |
21 | 刘丹, 帅汝臻, 李娟, 等. 基于病因学的多重损伤法宫腔粘连大鼠模型的建立和评价[J]. 宁夏医科大学学报, 2019, 41(4):373-378. DOI:10.16050/j.cnki.issn1674-6309.2019.04.010 . |
LIU D, SHUAI R Z, LI J, et al. Establishment and evaluation of the intrauterin adhesion rat model fabricated with etiological multi-injury factors[J]. J Ningxia Med Univ, 2019, 41(4):373-378. DOI:10.16050/j.cnki.issn1674-6309.2019.04.010 . | |
22 | XU C, BAO M, FAN X, et al. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions[J]. Reprod Biol Endocrinol, 2022, 20(1):9. DOI:10.1186/s12958-022-00887-5 . |
23 | XUE X, LI X, YAO J, et al. Transient and prolonged activation of Wnt signaling contribute oppositely to the pathogenesis of asherman's syndrome[J]. Int J Mol Sci, 2022, 23(15):8808. DOI:10.3390/ijms23158808 . |
24 | CHENG Y H, TSAI N C, CHEN Y J, et al. Extracorporeal shock wave therapy combined with platelet-rich plasma during preventive and therapeutic stages of intrauterine adhesion in a rat model[J]. Biomedicines, 2022, 10(2):476. DOI:10.3390/biomedicines10020476 . |
25 | LIU N N, ZHAO X, TAN J C, et al. Mycobiome dysbiosis in women with intrauterine adhesions[J]. Microbiol Spectr, 2022, 10(4): e0132422. DOI:10.1128/spectrum.01324-22 . |
26 | CAO J, LIU D, ZHAO S, et al. Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway[J]. Braz J Med Biol Res, 2020, 53(8): e9794. DOI:10.1590/1414-431x20209794 . |
27 | CHEN J X, YI X J, GU P L, et al. The role of KDR in intrauterine adhesions may involve the TGF-β1/Smads signaling pathway[J]. Braz J Med Biol Res, 2019, 52(10): e8324. DOI:10.1590/1414-431x20198324 . |
28 | CHEN Q, NI Y, HAN M, et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression[J]. Am J Transl Res, 2020, 12(6):3011-3022. |
29 | HAMUTOĞLU R, BULUT H E, KALOĞLU C, et al. The regulation of trophoblast invasion and decidual reaction by matrix metalloproteinase-2, metalloproteinase-7, and metalloproteinase-9 expressions in the rat endometrium[J]. Reprod Med Biol, 2020, 19(4):385-397. DOI:10.1002/rmb2.12342 . |
30 | 刘晓丽, 王晶, 陈春林. Smad2、Erk2及NF-kB在宫腔粘连组织中表达的临床研究[J]. 妇产与遗传(电子版), 2017, 7(4):16-20. DOI: 10.3868/j.issn.2095-1558.2017.04.005 . |
LIU X L, WANG J, CHEN C L. The expression of Smad2, Erk2, and NF-kB in endometrium of patient with intrauterine adhesion[J]. Obstet Gynecol Genet (Electronic Edition), 2017, 7(4):16-20. DOI: 10.3868/j.issn.2095-1558.2017.04.005 . | |
31 | 勾亚婷, 张文文, 李长江, 等. NF-κB信号通路在人羊膜间充质干细胞治疗宫腔粘连中的作用[J]. 第三军医大学学报, 2020, 42(11):1101-1108. DOI:10.16016/j.1000-5404.202003065 . |
GOU Y T, ZHANG W W, LI C J, et al. Role of NF-κB signaling pathway in treatment of intrauterine adhesions by human amniotic mesenchymal stem cells[J]. J Third Mil Med Univ, 2020, 42(11):1101-1108. DOI:10.16016/j.1000-5404.202003065 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Yue HUANG, Ye DONG, Jiale SHU. Discussion on the Operation, Maintenance and Care Modes of Laboratory Animals Facilities [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 92-96. |
[3] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[4] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[5] | Minbo HOU, Tiantian CUI, Naying SU, Miaomiao ZHANG, Yongmin JIAO, Jianyan YAN, Xijie WANG, Ohira TOKO. Pathologic Diagnosis of a Pituicytoma in a Han-Wistar Rat [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 654-658. |
[6] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[7] | Lifu LIAO, Yun LUO, Shen SHI, Yimei XU. Research on the Virulence Identification and Preservation Methods of Desert-type Leishmania donovani Strains [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 619-625. |
[8] | Ya ZHAO, Caiqin ZHANG, Han MENG, Jing QIN, Bing BAI, Yong ZHAO, Xu GE, Changhong SHI. Exploration of Laboratory Animal Science Teaching Practice from Perspectives of Curriculum Ideology and Politics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 641-646. |
[9] | Jianyun XIE. Research Progress Report on Microtus fortis as a New Resource of Laboratory Animal [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 482-491. |
[10] | Yong ZHAO. Evolution and Prospects of Laboratory Animal Management: A Case Study of Shanghai's Development in the Past Decade [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 492-503. |
[11] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[12] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[13] | Liping FENG, Qi ZHU, Jinxing LIN. Current Status and Reflection on the Study of Welfare for Laboratory Fish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 524-530. |
[14] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[15] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||