Laboratory Animal and Comparative Medicine ›› 2011, Vol. 31 ›› Issue (5): 399-403.DOI: 10.3969/j.issn.1674-5817.2011.05.021
YANG Meng-meng1, ZHANG Yan1, LIU Xin-you1, LUO Jia-bo2
Received:
2010-12-22
Online:
2011-10-15
Published:
2011-10-25
CLC Number:
YANG Meng-meng, ZHANG Yan, LIU Xin-you, LUO Jia-bo. Progress on Study of Rotavirus Mouse Model[J]. Laboratory Animal and Comparative Medicine, 2011, 31(5): 399-403.
[1] Wyatt RM.Human rotavirus type2:cultivation in vitro[J]. Science, 1980, 207(4427):189-191. [2] Wolf, JL, Cukor G, Blacklow NR, et al. Susceptibility of mice to rotavirus infection: Effects of age and administration of corticosteroids[J]. Infect Immunol, 1981, 33(2):565-574. [3] Ward, RL, Mcneal MM, Sheridan JF. Development of an adult mouse model for studies on protection against rotavirus[J]. J Virol, 1990, 64(10):5070-5075. [4] Sheridan JF, Eydelloth RS, Vonderfecht SL, et al.Virus specific immunity in neonatal and adult mouse rotavirus infection[J]. Infection and Immunity, 1983, 39(2):917-927. [5] Riepenhoff-Talty M, Lee PC, Carmody PJ, et al.Age dependent rotavirus enterocyte interactions[J]. Proc Soc Exp Biol Med, 1982, 170(2):146-154. [6] Boshuizen JA, Reimerink JH, Korteland-van Male AM, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice[J]. J Virol, 2003, 77(24):13005-13016. [7] Offit PA, Clark HF, Kornstein MJ, et al.A murine model for oral infection with a primate rotavirus(simian SA11)[J]. J Virol, 1984, 51(1):233-236. [8] Burns JW, Krishnaney AA, Vo PT, et al.Analyses of homologous rotavirus infection in the mouse model[J]. Virology, 1995, 207(1):143-153. [9] Eydelloth RS, Vonderfecht SL, Sheridan JF, et al.Kinetics of viral replication and local and systemic immune responses in experimental rotavirus infection[J]. J Virol, 1984, 50(3):947-950. [10] Starkey WG, Collins J, Wallis TS, et al.Kinetics, tissue specificity, and pathologic changes in murine rotavirus infection of mice[J]. J Gen Virol, 1986, 67(Pt12):2625-2634. [11] Chiappini E, Azzari C, Moriondo M, et al.Viraemia is a common finding in immunocompetent children with rotavirus infection[J]. J Med Virol, 2005, 76:265-267. [12] Cioc AM, Nuovo GJ.Histologic and in situ viral findings in the myocardium in cases of sudden, unexpected death[J]. Mod Pathol, 2002, 15:914-922. [13] Iturriza-Gomara M, Auchterlonie IA, Zaw W, et al.Rotavirus gastroenteritis and central nervous system(CNS) infection: characterization of the VP 7 and VP 4 genes of rotavirus strains isolated from paried fecal and cerebrospinal fluid samples from a child with CNS disease[J]. J Clin Microbiol, 2002, 40(12):4797-4799. [14] Li N, Wang ZY.Viremia and extraintestinal infections in infants with rotavirus diarrhea[J]. Di Yi Jun Da Xue Xue Bao, 2003, 23(7):643-648. [15] Lynch M, Shieh WJ, Tatti K, et al.The pathology of rotavirus-associated deaths, using new molecular diagnostic[J]. Clin Infect Dis, 2003, 37(10):1327-1333. [16] Morrison C, Gilson T, Nuovo GJ, et al.Histologic distribution of fatal rotavirus infection: an immunohistochemical and reverse transcriptase in situ polymerase chain reaction anaylsis[J]. Hum Pathol, 2001, 32(2):216-221. [17] Nuovo GJ, Owor G, Andrew T, et al.Histologic distribution of fatal rotaviral pneumonitis: an immunohistochemical and RT in situ PCR analysis[J]. Diagn Mol Pathol, 2002, 11(3):140-145. [18] Blutt SE, Kirkwood CD, Parreno V, et al.Rotavirus antigenaemia and viraemia: a common event?[J] Lancet, 2003, 362(9394):1445-1449. [19] Brown KA, Offit PA.Rotavirus-specific proteins are detected in murine macrophages in both intestinal and extraintestinal lymphoid tissues[J]. Microb Pathog, 1998, 24(6):327-331. [20] Dharakul T, Riepenhoff-Talty M, Albini B, et al.Distribution of rotavirus antigen in intestinal lymphoid tissue:potential role in development of the mucosal immune response to rotavirus[J]. Clin Exp Immunol, 1988, 74(1):14-19. [21] Kraft L.M.Two viruses causing diarrhea in infant mice[M]. In RJC.Harris(ed.). The problems of laboratory animal disease. New York :Academic Press, Inc, 1962.115-130. [22] Mossel EC, Ramig RF.Rotavirus genome segment7 (NSP3)is a determinant of extraintestinal spread in the neonatal mouse[J]. J Virol, 2002, 76(13):6502-6509. [23] Shaw DP, Morehouse LG, Solorzano RF, et al.Experimental rotavirus infection in three-week-old pigs[J]. Am J Vet Res, 1989, 50(11):1961-1965. [24] Brown K.A, Offit PA. Rotavirus-specific proteins are detected in murine macrophages in both intestinal and extraintestinal lymphoid tissues[J]. Microb Pathog, 1998, 24(6): 327-331. [25] Kraft LM.Observations on the control and naturalhistory of epidemic diarrhea of infant mice(EDIM)[J]. Yale J Biol Med, 1958, 31(3):122-136. [26] Mossel EC, Ramig RF.A lymphatic mechanis of rotavirus extraintestinal spread in the neonatal mouse[J]. J Virol, 2003, 77(22):12352-12356. [27] Feng N, Franco MA, Greenberg HB.Murine model of rotavirus infection[J]. Adv Exp Med Biol, 1997, 412:233-240. [28] Osborne MP, Haddon SJ, Spencer AJ, et al.An electron microscopic investigation of time-related changes in the intestine of neonatal mice infected with murine rotavirus. rotavirus infection[J]. Exp Mol Pathol, 1989, 7(2):236-248. [29] Ramig RF.The effects of host age, virus dose, and virus strain on heterologous rotavirus infection of suckling mice[J]. Microbiol Pathol, 1984, 4(3):189-202. [30] Greenberg HB, Vo PT, Jones R.Cultivation and characterization of three strains of murine rotavirus[J]. J Virol, 1986, 57(2):585-590. [31] Ijaz MK, Dent D, Haines D, et al.Development of a murine model to study the pathogenesis of rotavirus infection[J].Exp Mol Pathol, 1989, 51(2):186-204. [32] Woode GN, Zheng S, Melendy DR, et al.Studies on rotavirus homologous and heterologous active immunity in infant mice[J]. Viral Immunol, 1989, 2(2):127-132. [33] Gouvea VS, Alencar AA, Barth OM, et al.Diarrhea in mice infected with a human rotavirus[J]. J Gen Virol, 1986, 67(Pt3), 577-581. [34] Coelho KL, Bryden AS, Hall C, et al.Pathology of rotavirus infection in suckling mice: a study by conventional histology, immunofluorescence, ultrathin sections, and scanning electron microscopy[J]. Ultrastruct Pathol, 1981, 2(1):59-80. [35] Osborne MP, Haddon SJ, Spencer AJ, et al.An electron microscopic investigation of time-related changes in the intestine of neonatal mice infected with murine rotavirus[J]. J Pediatr Gastroenterol Nutr, 1988, 7(2):236-248. [36] Shirin K, Claudia I, Mahanez B, et al.Rotavirus infection is not associated with small intestinal fluid secretion in the adult mouse[J]. J Virol, 2006, 80(22):11355-11361. [37] Tucker RM, Hendrickson RJ, Mukaida N, et al.Progressive biliary destruction is independent of a functional tumor necrosis factor-alpha pathway in a rhesus rotavirus-induced murine model of biliary atresia[J]. Viral Immunol, 2007, 20(1):34-43. [38] Feng J, Li M, Cai T, et al.Rotavirus induced murine biliary atresia is mediated by nuclear factor-kappaB[J]. J Pediatr Surg, 2005, 40(4):630-636. [39] Allen SR, Jafri M, Donnelly B, et al.Effect of rotavirus strain on the murine model of biliary atresia[J]. J Virol, 2007, 81(4):1671-1679. [40] Kordasti S, Sjovall H, Lundgren O, et al.Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhea[J]. Gut, 2004, 53(7):952-957. [41] Lundgrenk O, Peregrin AT, Persson K, et al.Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea[J]. Science, 2000, 287(5452):491-495. [42] Collins J, Candy DC, Starkey WG, et al.Disaccharidase activities in small intestine of rotavirus infected suckling mice: a histochemical study[J]. J Pediatr Gastroenterol Nutr, 1990, 11(3):395-403. [43] Collins J, Starkey WG, Wallis TS, et al.Intestinal exzyme profiles in normal and rotavirus-infected mice[J]. J Pediatr Gastroenterol Nutr, 1988,7(2):264-272. [44] Rollo EE, Kumar KP, Reich NC, et al.The epithelial cell response to rotavirus infection[J]. J Immunol, 1999, 163(8):4442-4452. [45] Morris AP, Scott JK, Ball JM, et al.NSP4 elicits age-dependent diarrhea and Ca2+ mediated I (-) influx into intestinal crypts of CF mice[J]. Am J Physiol, 1999, 277(2Pt1):G431-444. [46] Knipping K, McNeal MM, Crienen A, et al. A gastrointestinal rotavirus infection mouse model for immune modulation studies[J]. Virol J, 2011, 8(8):109. [47] Wu CR, Jiang X, He ST, et al.Effects of QWBZP on T-cell subsets and their cytokines in intestinal mucosa of HRV infection suckling mice[J]. J Ethnopharmacol, 2010, 131(1):130-134. |
[1] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[2] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
[3] | Yinghan WAN, Yexin GU, Yunong YUAN, Min TANG, Li LU. Implications on the Development of Animal Disease Models from FDA Modernization Act 2.0 [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 472-481. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[6] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[7] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[8] | Shanshan ZHAI, Liang LIANG, Yingying CAO, Zhuxin LI, Qing WANG, Junyu TAO, Chenxia YUN, Jing LENG, Haibo TANG. Diagnosis of Trichoepithelioma in a Tree Shrew and Observation of Cell Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 440-445. |
[9] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[10] | Xiaoqian TAN, Hao YANG, Huiqing TANG, Wei QU, Liang LI, Zhen QIAN, Jianzhong GU, Ping XU, Junhua XIAO. Creation and Analysis of Related Genetic Characteristics of BALB/cA.Cg.SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 363-370. |
[11] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[12] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[13] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[14] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[15] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||