Laboratory Animal and Comparative Medicine ›› 2018, Vol. 38 ›› Issue (5): 329-335.DOI: 10.3969/j.issn.1674-5817.2018.05.002
Previous Articles Next Articles
YU Jin, ZHAN Hai-ting, CHENG Hu, LI Yu-qian, ZHENG Hong
Received:2018-04-28
Online:2018-10-25
Published:2018-10-25
CLC Number:
YU Jin,ZHAN Hai-ting,CHENG Hu,et al. Cyclosporin A on Cardioprotective Effect of Sevoflurane Postconditioning under High Glucose Concentration in Rat[J]. Laboratory Animal and Comparative Medicine, 2018, 38(5): 329-335. DOI: 10.3969/j.issn.1674-5817.2018.05.002.
| [1] Bellodi G,Manicardi V,Malavasi V,et al.Hyperglycemia and prognosis of acute myocardial infarction in patients without diabetes mellitus[J].Am J Cardiol,1989,64(14):885-888. [2] Huhn R,Heinen A,Weber NC,et al.Hyperglycaemia blocks sevoflurane-induced postconditioning in the rat heart in vivo:cardioprotection can be restored by blocking the mitochondrial permeability transition pore[J].Br J Anaesth,2008,100(4):465-471. [3] Tai W,Shi E,Yan L,et al.Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo:roles of glycogen synthase kinase-3beta and its upstream pathways[J].J Surg Res,2012,178(1):96-104. [4] Yang L,Xie P,Wu J,et al.Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1[J].Am J Transl Res,2016,8(10):4415-4424. [5] Yu J,Maimaitili Y,Xie P,et al.High glucose concentration abrogates sevoflurane post-conditioning cardioprotection by advancing mitochondrial fission but dynamin-related protein 1 inhibitor restores these effects[J].Acta Physiol (Oxf),2017,220(1):83-98. [6] Galluzzi L,Kepp O,Kroemer G.Mitochondria:master regulators of danger signalling[J].Nat Rev Mol Cell Biol,2012,13(12):780-788. [7] Whelan RS,Kaplinskiy V,Kitsis RN.Cell death in the pathogenesis of heart disease:mechanisms and significance[J].Annu Rev Physiol,2010,72:19-44. [8] Hom J,Sheu SS.Morphological dynamics of mitochondria-a special emphasis on cardiac muscle cells[J].J Mol Cell Cardiol,2009,46(6):811-820. [9] Dagda RK,Cherra SJ 3rd,Kulich SM,et al.Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission[J].J Biol Chem,2009,284(20):13843-13855. [10] Yao YT,Fang NX,Shi CX,et al.Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury[J].Chin Med J (Engl),2010,123(10):1320-1328. [11] Gong JS,Yao YT,Fang NX,et al.Sevoflurane postconditioning attenuates reperfusion-induced ventricular arrhythmias in isolated rat hearts exposed to ischemia/reperfusion injury[J].Mol Biol Rep,2012,39(6):6417-6425. [12] Yu J,Wu J,Xie P,et al.Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology[J].PeerJ,2016,4:e2659. [13] Wu J,Yu J,Xie P,et al.Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2-STAT3 pathway[J].PeerJ,2017,5:e3196. [14] Li H,Wang JK,Zeng YM,et al.Sevoflurane post-conditioning protects against myocardial reperfusion injury by activation of phosphatidylinositol-3-kinase signal transduction[J].Clin Exp Pharmacol Physiol,2008,35(9):1043-1051. [15] Zhang J,Wang C,Yu S,et al.Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling[J].Sci Rep,2014,4:7317. [16] Yao YT,Li LH,Chen L,et al.Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury:the role of radical oxygen species,extracellular signal-related kinases 1/2 and mitochondrial permeability transition pore[J].Mol Biol Rep,2010,37(5):2439-2446. [17] Drenger B,Ostrovsky IA,Barak M,et al.Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart:phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition[J].Anesthesiology,2011,114(6):1364-1372. [18] Hausenloy DJ,Boston-Griffiths EA,Yellon DM.Cyclosporin A and cardioprotection:from investigative tool to therapeutic agent[J].Br J Pharmacol,2012,165(5):1235-1245. [19] Ong SB,Samangouei P,Kalkhoran SB,et al.The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury[J].J Mol Cell Cardiol,2015,78:23-34. [20] Hausenloy DJ,Maddock HL,Baxter GF,et al.Inhibiting mitochondrial permeability transition pore opening:a new paradigm for myocardial preconditioning?[J].Cardiovasc Res,2002,55(3):534-543. [21] Argaud L,Gateau-Roesch O,Muntean D,et al.Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury[J].J Mol Cell Cardiol,2005,38(2):367-374. [22] Krolikowski JG,Bienengraeber M,Weihrauch D,et al.Inhibition of mitochondrial permeability transition enhances isoflurane-induced cardioprotection during early reperfusion:the role of mitochondrial KATP channels[J].Anesth Analg,2005,101(6):1590-1596. [23] Di Lisa F,Carpi A,Giorgio V,et al.The mitochondrial permeability transition pore and cyclophilin D in cardioprotection[J].Biochim Biophys Acta,2011,1813(7):1316-1322. [24] Halestrap AP,Richardson AP.The mitochondrial permeability transition:a current perspective on its identity and role in ischaemia/reperfusion injury[J].J Mol Cell Cardiol,2015,78:129-141. [25] Ong SB,Subrayan S,Lim SY,et al.Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J].Circulation,2010,121(18):2012-2022. |
| [1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
| [2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
| [3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
| [5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
| [6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
| [7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
| [9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
| [10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
| [11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
| [13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
| [14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
| [15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||