Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (1): 77-82.DOI: 10.3969/j.issn.1674-5817.2019.01.015
YANG Li-qiong1, XIE Jun1, LIU Fang-fang2, CHEN Jian3, XU Fan3
Received:
2018-10-09
Online:
2019-02-25
Published:
2021-01-29
CLC Number:
YANG Li-qiong,XIE Jun,LIU Fang-fang,et al. The Research Progress of Biological Significance of Birds’ Call[J]. Laboratory Animal and Comparative Medicine, 2019, 39(1): 77-82. DOI: 10.3969/j.issn.1674-5817.2019.01.015.
[1] Fant G.Acoustic Theory of Speech Production[M]. The Hague: Mouton, 1960:111-119. [2] Elemans CP, Rasmussen JH, Herbst CT, et al.Universal mechanisms of sound production and control in birds and mammals[J]. Nat Commun, 2015, 6:8978. [3] Fitch WT.Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques[J]. J Acoust Soc Am, 1997, 102(2 Pt 1):1213-1222. [4] Story BH, Titze IR, Hoffman EA.Vocal tract area functions for an adult female speaker based on volumetric imaging[J]. J Acoust Soc Am, 1998, 104(1):471-487. [5] Fitch WT, Kelley JP.Perception of vocal tract resonances by whooping cranes Grus americana[J]. Ethology, 2006,106(6):559-574. [6] Beckers GJ, Nelson BS, Suthers RA.Vocal-tract filtering by lingual articulation in a parrot[J]. Curr Biol, 2004, 14(17):1592-1597. [7] Patterson DK, Pepperberg IM.A comparative study of human and parrot phonation: Acoustic and articulatory correlates of vowels[J]. J Acoust Soc Am, 1994, 96(2):634. [8] Nowicki S.Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere[J]. Nature, 1987, 325(6099):53-55. [9] Kumar A.Acoustic communication in birds[J]. Resonance, 2003,8(6):44-55. [10] Harper AB.The evolution of begging: sibling competition and parent-offspring conflict[J]. Am Nat, 1986, 128(1):99-114. [11] Neuenschwander S, Brinkhof M, Kolliker M, et al.Brood size, sibling competition, and the cost of begging in great tits (Parus major)[J]. Behav Ecol, 2003, 14(4):457-462. [12] Levréro F, Durand L, Vignal C, et al.Begging calls support offspring individual identity and recognition by zebra finch parents[J]. C R Biol, 2009, 332(6):579-589. [13] Reers H, Jacot A.The effect of hunger on the acoustic individuality in begging calls of a colonially breeding weaver bird[J]. BMC Ecol, 2011,11:3. [14] Villain AS, Boucaud IC, Bouchut C, et al.Parental influence on begging call structure in zebra finches (Taeniopygia guttata): evidence of early vocal plasticity[J]. R Soc Open Sci, 2015,2(11):150497. [15] Buchanan KL, Goldsmith AR, Hinde CA, et al.Does testosterone mediate the trade-off between nestling begging and growth in the canary (Serinus canaria)?[J]. Horm Behav, 2007, 52(5):664-671. [16] Goodship NM, Buchanan KL.Nestling testosterone is associated with begging behaviour and fledging success in the pied flycatcher, Ficedula hypoleuca[J]. Proc Biol Sci, 2006,273(1582):71-76. [17] Goodship NM, Buchanan KL.Nestling testosterone controls begging behaviour in the pied flycatcher, Ficedula hypoleuca[J]. Horm Behav, 2007, 52(4):454-460. [18] Isaksson C, Magrath MJ, Groothuis TG, et al.Androgens during development in a bird species with extremely sexually dimorphic growth, the brown songlark, Cinclorhamphus cruralis[J]. Gen Comp Endocrinol, 2010, 165(1):97-103. [19] Muller MN.Testosterone and reproductive effort in male primates[J]. Horm Behav, 2017, 91:36-51. [20] Suthers RA.Contributions to birdsong from the left and right sides of the intact syrinx[J]. Nature, 1990, 347:473. [21] Robert BP.Song structure, behaviour, and sequence of song types in a population of village indigobirds, Vidua chalybeata[J]. Anim Behav, 1979, 27:997-1013. [22] Redpath SM, Bridget MA, Steve JP.Do male hoots betray parasite loads in Tawny Owls?[J]. J Avian Biol, 2000, 31(4):457-462. [23] Reid JM, Arcese P, Cassidy AL, et al.Fitness correlates of song repertoire size in free-living song sparrows (Melospiza melodia)[J]. Am Nat, 2005, 165(3):299-310. [24] Lengagne T, Lauga J, Aubin T.Intra-syllabic acoustic signatures used by the king penguin in parent-chick recognition: an experimental approach[J]. J Exp Biol, 2001, 204(Pt 4):663-672. [25] Nowicki S, Searcy WA.Song function and the evolution of female preferences: why birds sing, why brains matter[J]. Ann N Y Acad Sci, 2004, 1016:704-723. [26] Shevchouk OT, Ghorbanpoor S, Smith E, et al.Behavioral evidence for sex steroids hypersensitivity in castrated male canaries[J]. Horm Behav, 2018, 103:80-96. [27] Nemeth E, Pieretti N, Zollinger SA, et al.Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities[J]. Proc Biol Sci, 2013,280(1754):2798. [28] Nottebohm F.The neural basis of birdsong[J]. PLoS Biol, 2005, 3(5):164. [29] Brainard MS, Doupe AJ.Auditory feedback in learning and maintenance of vocal behaviour[J]. Nat Rev Neurosci, 2000,1(1):31-40. [30] Carew TJ.Behavioral Neurobiology: The Cellular organization of natural behavior[M]. Sunderland: Sinauer Associates, 2000:321-326. [31] Vates GE, Vicario DS, Nottebohm F.Reafferent thalamo- “cortical” loops in the song system of oscine songbirds[J]. J Comp Neurol, 1997, 380(2):275-290. [32] Nottebohm F, Arnold AP.Sexual dimorphism in vocal control areas of the songbird brain[J]. Science, 1976, 194(4261):211-213. [33] Li J, Zeng SJ, Zhang XW, et al.The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity[J]. Behav Brain Res, 2006, 172(2):202-211. [34] Parejo D, Aviles JM, Rodriguez J.Alarm calls modulate the spatial structure of a breeding owl community[J]. Proc Biol Sci, 2012, 279(1736):2135-2141. [35] Fallow PM, Pitcher BJ, Magrath RD.Alarming features: birds use specific acoustic properties to identify heterospecific alarm calls[J]. Proc Biol Sci, 2013, 280(1754):2539. [36] Ausmus DM, Clarke JA.Mother knows best: functionally referential alarm calling in white-tailed ptarmigan[J]. Anim Cogn, 2014, 17(3):671-679. [37] Mates EA, Tarter RR, Ha JC, et al.Acoustic profiling in a complexly social species, the American crow: caws encode information on caller sex, identity, and behavioural context[J]. Bioacoustics, 2015, 24(1):63-80. [38] Potvin DA, Ratnayake CP, Radford AN, et al.Birds learn socially to recognize heterospecific alarm calls by acoustic association[J]. Curr Biol, 2018, 28(16):2632-2637. [39] Templeton CN, Zollinger SA, Brumm H.Traffic noise drowns out great tit alarm calls[J]. Curr Biol, 2016, 26(22):R1173-R1174. [40] Gyger M, Karakashian SJ, Dufty AM, Jr., et al. Alarm signals in birds: the role of testosterone[J]. Horm Behav, 1988, 22(3):305-314. [41] Sproul C, Palleroni A, Hauser MD.Cottontop tamarin, Saguinus oedipus, alarm calls contain sufficient information for recognition of individual identity[J]. Anim Behav, 2006,72(6):1379-1385. [42] Horton KG, Stepanian PM, Wainwright CE, et al.Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls[J]. Int J Biometeorol, 2015, 59(10):1385-1394. [43] Griffiths ET, Keen SC, Lanzone M, et al.Can nocturnal flight calls of the migrating songbird, american redstart, encode sexual dimorphism and individual identity?[J]. PLoS One, 2016, 11(6):e0156578. [44] Stepanian PM, Horton KG, Hille DC, et al.Extending bioacoustic monitoring of birds aloft through flight call localization with a three-dimensional microphone array[J]. Ecol Evol, 2016, 6(19):7039-7046. [45] Cannon WB.Wisdom of the Body[M]. Now York: W. W. Norton & Company, 1932:121-125. [46] Glenk LM, Machatschke H, Wallner B.Fight or flight? Effects of vaginal oestrus on cortisol, testosterone, and behaviour in guinea pig female-female interaction[J]. Behav Process, 2018,157:625-631. [47] Lee KS, Chatterjee P, Choi EY, et al.Selection on the regulation of sympathetic nervous activity in humans and chimpanzees[J]. PLoS Genet, 2018, 14(4):e1007311. [48] Boeckle M, Szipl G, Bugnyar T.Raven food calls indicate sender’s age and sex[J]. Front Zool, 2018, 15(1):5. [49] Szipl G, Boeckle M, Wascher CAF, et al.With whom to dine? Ravens’ responses to food-associated calls depend on individual characteristics of the caller[J]. Anim Behav, 2015,99:33-42. [50] Emery N.Bird brain: an exploration of avian intellgence[M]. Lewes: lvy Press, 2016:128-129. |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
[5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
[6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
[7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
[8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
[9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
[11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
[12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
[13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
[14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
[15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||