Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (5): 337-341.DOI: 10.3969/j.issn.1674-5817.2019.05.001
Special Issue: 专家论坛
Received:
2018-04-09
Online:
2019-10-25
Published:
2021-01-05
CLC Number:
[1] Usama SM, Zhao B, Burgess K.A near-IR fluorescent dasatinib derivative that localizes in cancer cells[J]. Bioconjug Chem, 2019, 30(4):1175-1181. [2] 赖漪娆, 丁晔伟, 施琳俊, 等. 近红外荧光成像在头颈部鳞癌手术治疗中的应用[J]. 临床口腔医学杂志, 2018, 34(8):506-509. [3] 张贺, 张彩勤, 赵勇, 等. 基于临床手术标本的胰腺癌原位移植模型建立及评价[J]. 中国实验动物学报, 2018, 26(3):296-301. [4] Liberale G, Vankerckhove S, Galdon MG, et al.Fluorescence imaging after intraoperative intravenous injection of indocyanine green for detection of lymph node metastases in colorectal cancer[J]. Eur J Surg Oncol, 2015, 41(9):1256-1260. [5] Feng L, Yang Y, Huo X, et al.Highly selective NIR probe for intestinal β-glucuronidase and high-throughput screening inhibitors to therapy intestinal damage[J]. ACS Sens, 2018, 3(9):1727-1734. [6] Yang JA, Kong WH, Sung DK, et al.Hyaluronic acid-tumor necrosis factor-related apoptosis-inducing ligand conjugate for targeted treatment of liver fibrosis[J]. Acta Biomater, 2015, 12:174-182. [7] Keereweer S, Mol IM, Kerrebijn JD, et al.Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer[J]. J Surg Oncol, 2012, 105(7):714-718. [8] Xu M, Rettig MP, Sudlow G, et al.Preclinical evaluation of Mab CC188 for ovarian cancer imaging[J]. Int J Cancer, 2012, 131(6):1351-1359. [9] Tsuchimochi M, Yamaguchi H, Hayama K, et al. Imaging of metastatic cancer cells in sentinel lymph nodes using affibody probes and possibility of a theranostic approach[J]. Int J Mol Sci, 2019,20(2): pii: E427. [10] Yi X, Yan F, Wang F, et al.IR-780 dye for near-infrared fluorescence imaging in prostate cancer[J]. Med Sci Monit, 2015, 21:511-517. [11] Shao C, Liao CP, Hu P, et al.Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer[J]. PLoS One, 2014, 9(2):e88967. [12] Yi X, Wang F, Qin W, et al.Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field[J]. Int J Nanomedicine, 2014, 9:1347-1365. [13] Thomas RG, Moon MJ, Surendran SP, et al.MHI-148 cyanine dye conjugated chitosan nanomicelle with NIR light-trigger release property as cancer targeting theranostic agent[J]. Mol Imaging Biol, 2018, 20(4):533-543. [14] Yang X, Shi C, Tong R, et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J]. Clin Cancer Res, 2010, 16(10):2833-2844. [15] Shi C, Wu JB, Pan D.Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy[J]. J Biomed Opt, 2016, 21(5):50901-50911. [16] Miranda D, Huang H, Kang H, et al.Highly-soluble cyanine J-aggregates entrapped by liposomes for in vivo optical imaging around 930 nm[J]. Theranostics, 2019, 9(2):381-390. [17] Zhao N, Zhang C, Zhao Y, et al.Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes[J]. Oncotarget, 2016, 7(35):57277-57289. [18] Zhang C, Zhao Y, Zhang H, et al. The application of heptamethine cyanine dye HC and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma[J]. Int J Mol Sci, 2017, 18(6):pii:E1332. [19] van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients[J]. Oral Oncol, 2013, 49(1):15-19. [20] Shi C, Wu JB, Chu GC, et al.Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF1α/OATPs signaling axis[J]. Oncotarget, 2014, 5(20):10114-10126. [21] Wu JB, Shi C, Chu GC, et al.Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor[J]. Biomaterials, 2015, 67:1-10. [22] An J, Zhao N, Zhang C, et al.Heptamethine carbocyanine DZ-1 dye for near-infrared fluorescence imaging of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(34):56880-56892. [23] Kim JS, Kim YH, Kim JH, et al.Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation[J]. Nanomedicine(Lond), 2012, 7(2):219-229. [24] Wu J, Pan D, Chung LW.Near-infrared fluorescence and nuclear imaging and targeting of prostate cancer[J]. Transl Androl Urol, 2013, 2(3):254-264. [25] Lutje S, Rijpkema M, Goldenberg DM, et al.Pretargeted dual-modality immuno-SPECT and near-infrared fluorescence imaging for image-guided surgery of prostate cancer[J]. Cancer Res, 2014, 74(21):6216-6223. [26] Zhang Y, Xiao L, Popovic K, et al.Novel cancer-targeting SPECT/NIRF dual-modality imaging probe (99m)Tc-PC-1007: synthesis and biological evaluation[J]. Bioorg Med Chem Lett, 2013, 23(23):6350-6354. [27] Wu JB, Shao C, Li X, et al.Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1alpha/OATPs signaling axis[J]. Biomaterials, 2014, 35(28):8175-8185. [28] Hirche C, Murawa D, Mohr Z, et al.ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer[J]. Breast Cancer Res Treat, 2010, 121(2): 373-378. [29] Hagenbuch B, Stieger B.The SLCO (former SLC21) superfamily of transporters[J]. Mol Aspects Med, 2013, 34(2-3):396-412. [30] Liu T, Li Q.Organic anion-transporting polypeptides: a novel approach for cancer therapy[J]. J Drug Target, 2014, 22(1):14-22. [31] Yuan J, Yi X, Yan F, et al.Nearinfrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes[J]. Mol Med Rep, 2015, 11(2):821-828. [32] Wang Y, Liu T, Zhang E, et al.Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells[J]. Biomaterials, 2014, 35(13):4116-4124. |
[1] | Ya ZHAO, Caiqin ZHANG, Han MENG, Jing QIN, Bing BAI, Yong ZHAO, Xu GE, Changhong SHI. Exploration of Laboratory Animal Science Teaching Practice from Perspectives of Curriculum Ideology and Politics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 641-646. |
[2] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[3] | Yongqiang NIE, Zhaoxia WANG. Rescue Technology and Its Application of Endangered Gene-Edited Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 636-640. |
[4] | Yong ZHAO. Evolution and Prospects of Laboratory Animal Management: A Case Study of Shanghai's Development in the Past Decade [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 492-503. |
[5] | Liping FENG, Qi ZHU, Jinxing LIN. Current Status and Reflection on the Study of Welfare for Laboratory Fish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 524-530. |
[6] | Jinxing LIN, Xindong WANG, Xuebing BAI, Liping FENG, Shuwu XIE, Qiusheng CHEN. Fine Structure of the Trunk Kidney and Distribution of Its Secreted Exosomes in the Adult Zebrafish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 531-540. |
[7] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[8] | Shuzhen ZHANG, Yanguang ZHAO. Investigation Report on the Production and Utilization Status of Experimental Mini-pigs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 559-565. |
[9] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[10] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[11] | Lianxiang GUO. Revision of Standards for Microbiological and Parasitological Grades in Laboratory Animals and Its Comparison to Foreign Standards [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 339-346. |
[12] | Ying HUANG, Siyu WEI, Li CAI, Sujing QIANG, Dongting LI, Yuqiang DING. Microbiological Monitoring Analysis of Laboratory Rats and Mice from Vendors: Department of Laboratory Animal Science of Fudan University as an Example [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 347-354. |
[13] | Xinyan BIAN, Yong LU, Yan WANG, Qiang SUN. Analysis of the Birthing Behaviour of Cynomolgus Macaques [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 355-362. |
[14] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[15] | Hui CHENG, Fei FANG, Jiahao SHI, Hua YANG, Mengjie ZHANG, Ping YANG, Jian FEI. H1 Linker Histone Gene Regulates Lifespan via Dietary Restriction Pathways in Caenorhabditis elegans [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 271-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||