Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (5): 337-341.DOI: 10.3969/j.issn.1674-5817.2019.05.001
Special Issue: 专家论坛
Received:2018-04-09
Online:2019-10-25
Published:2021-01-05
CLC Number:
| [1] Usama SM, Zhao B, Burgess K.A near-IR fluorescent dasatinib derivative that localizes in cancer cells[J]. Bioconjug Chem, 2019, 30(4):1175-1181. [2] 赖漪娆, 丁晔伟, 施琳俊, 等. 近红外荧光成像在头颈部鳞癌手术治疗中的应用[J]. 临床口腔医学杂志, 2018, 34(8):506-509. [3] 张贺, 张彩勤, 赵勇, 等. 基于临床手术标本的胰腺癌原位移植模型建立及评价[J]. 中国实验动物学报, 2018, 26(3):296-301. [4] Liberale G, Vankerckhove S, Galdon MG, et al.Fluorescence imaging after intraoperative intravenous injection of indocyanine green for detection of lymph node metastases in colorectal cancer[J]. Eur J Surg Oncol, 2015, 41(9):1256-1260. [5] Feng L, Yang Y, Huo X, et al.Highly selective NIR probe for intestinal β-glucuronidase and high-throughput screening inhibitors to therapy intestinal damage[J]. ACS Sens, 2018, 3(9):1727-1734. [6] Yang JA, Kong WH, Sung DK, et al.Hyaluronic acid-tumor necrosis factor-related apoptosis-inducing ligand conjugate for targeted treatment of liver fibrosis[J]. Acta Biomater, 2015, 12:174-182. [7] Keereweer S, Mol IM, Kerrebijn JD, et al.Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer[J]. J Surg Oncol, 2012, 105(7):714-718. [8] Xu M, Rettig MP, Sudlow G, et al.Preclinical evaluation of Mab CC188 for ovarian cancer imaging[J]. Int J Cancer, 2012, 131(6):1351-1359. [9] Tsuchimochi M, Yamaguchi H, Hayama K, et al. Imaging of metastatic cancer cells in sentinel lymph nodes using affibody probes and possibility of a theranostic approach[J]. Int J Mol Sci, 2019,20(2): pii: E427. [10] Yi X, Yan F, Wang F, et al.IR-780 dye for near-infrared fluorescence imaging in prostate cancer[J]. Med Sci Monit, 2015, 21:511-517. [11] Shao C, Liao CP, Hu P, et al.Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer[J]. PLoS One, 2014, 9(2):e88967. [12] Yi X, Wang F, Qin W, et al.Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field[J]. Int J Nanomedicine, 2014, 9:1347-1365. [13] Thomas RG, Moon MJ, Surendran SP, et al.MHI-148 cyanine dye conjugated chitosan nanomicelle with NIR light-trigger release property as cancer targeting theranostic agent[J]. Mol Imaging Biol, 2018, 20(4):533-543. [14] Yang X, Shi C, Tong R, et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J]. Clin Cancer Res, 2010, 16(10):2833-2844. [15] Shi C, Wu JB, Pan D.Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy[J]. J Biomed Opt, 2016, 21(5):50901-50911. [16] Miranda D, Huang H, Kang H, et al.Highly-soluble cyanine J-aggregates entrapped by liposomes for in vivo optical imaging around 930 nm[J]. Theranostics, 2019, 9(2):381-390. [17] Zhao N, Zhang C, Zhao Y, et al.Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes[J]. Oncotarget, 2016, 7(35):57277-57289. [18] Zhang C, Zhao Y, Zhang H, et al. The application of heptamethine cyanine dye HC and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma[J]. Int J Mol Sci, 2017, 18(6):pii:E1332. [19] van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients[J]. Oral Oncol, 2013, 49(1):15-19. [20] Shi C, Wu JB, Chu GC, et al.Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF1α/OATPs signaling axis[J]. Oncotarget, 2014, 5(20):10114-10126. [21] Wu JB, Shi C, Chu GC, et al.Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor[J]. Biomaterials, 2015, 67:1-10. [22] An J, Zhao N, Zhang C, et al.Heptamethine carbocyanine DZ-1 dye for near-infrared fluorescence imaging of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(34):56880-56892. [23] Kim JS, Kim YH, Kim JH, et al.Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation[J]. Nanomedicine(Lond), 2012, 7(2):219-229. [24] Wu J, Pan D, Chung LW.Near-infrared fluorescence and nuclear imaging and targeting of prostate cancer[J]. Transl Androl Urol, 2013, 2(3):254-264. [25] Lutje S, Rijpkema M, Goldenberg DM, et al.Pretargeted dual-modality immuno-SPECT and near-infrared fluorescence imaging for image-guided surgery of prostate cancer[J]. Cancer Res, 2014, 74(21):6216-6223. [26] Zhang Y, Xiao L, Popovic K, et al.Novel cancer-targeting SPECT/NIRF dual-modality imaging probe (99m)Tc-PC-1007: synthesis and biological evaluation[J]. Bioorg Med Chem Lett, 2013, 23(23):6350-6354. [27] Wu JB, Shao C, Li X, et al.Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1alpha/OATPs signaling axis[J]. Biomaterials, 2014, 35(28):8175-8185. [28] Hirche C, Murawa D, Mohr Z, et al.ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer[J]. Breast Cancer Res Treat, 2010, 121(2): 373-378. [29] Hagenbuch B, Stieger B.The SLCO (former SLC21) superfamily of transporters[J]. Mol Aspects Med, 2013, 34(2-3):396-412. [30] Liu T, Li Q.Organic anion-transporting polypeptides: a novel approach for cancer therapy[J]. J Drug Target, 2014, 22(1):14-22. [31] Yuan J, Yi X, Yan F, et al.Nearinfrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes[J]. Mol Med Rep, 2015, 11(2):821-828. [32] Wang Y, Liu T, Zhang E, et al.Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells[J]. Biomaterials, 2014, 35(13):4116-4124. |
| [1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
| [2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
| [3] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [4] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
| [5] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
| [6] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
| [7] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [8] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
| [9] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
| [10] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
| [11] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [12] | LIU Kun, LAN Qing, YI Bing, XIE Xiaojie. Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 449-456. |
| [13] | . [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 508-514. |
| [14] | CHEN Ziyi, SUN Hongyan, KANG Pinfang, WU Wenjuan. Research Advances in Animal Experimental Models of Pulmonary Hypertension [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-12. |
| [15] | XU Yingtao, WANG Mengmeng, LIN Ping, CHI Haitao, WANG Yi, BAI Ying. Exosomes Improve Ischemic Stroke by Regulation of Ferroptosis Through the NRF2/SLC7A11/GPX4 Pathway in Mice [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||