Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 422-428.DOI: 10.12300/j.issn.1674-5817.2023.032
• Animal Models of Human Diseases • Previous Articles Next Articles
Hui HUANG(), Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN(
)(
)
Received:
2023-03-07
Revised:
2023-06-05
Online:
2023-08-25
Published:
2023-08-25
Contact:
Jiang LIN
CLC Number:
Hui HUANG,Yasheng DENG,Tianwei LIANG,et al. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. DOI: 10.12300/j.issn.1674-5817.2023.032.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.032
造模因素 Modeling factor | 造模方法 Modeling method | 模型原理 Models principle | 造模周期 Modeling cycle | 动物 Animal | 药物剂量及使用频次 Dose/(mg·kg-1)× frequency | 造模总频次(占比) Total modeing frequency (percentage/%) |
---|---|---|---|---|---|---|
医源性 Iatrogenic | 雷公藤制剂造模法 | 抑制卵泡颗粒细胞的活性,促使卵巢功能减退的发生[ | 14~30 d | 大鼠 | 50×28; 75×4; 55×2; 5×2; 75×1 | 38 (40.86) |
小鼠 | 40×1 | |||||
环磷酰胺造模法 | 环磷酰胺具有明显的卵巢毒性,可以严重影响卵巢的结构及细胞增殖,对卵巢产生不可逆性的损伤,导致卵巢原始卵泡减少,卵泡永久性闭锁[ | 1~14次 | 大鼠 | 75×16; 90×1; 50×2; 50×1+8×1 | 28 (30.11) | |
小鼠 | 1.8×1 | |||||
顺铂造模法 | 顺铂对卵巢具有毒性作用,其主要损害卵巢皮质和颗粒细胞,诱导卵母细胞凋亡,导致卵泡数减少,加速卵泡闭锁[ | 单次 | 大鼠 | 5×1 | 2 (2.15) | |
小鼠 | 3×1 | |||||
环磷酰胺联合白消安 | 抑制DNA、RNA和蛋白质的合成,对卵巢功能造成损伤[ | 单次 | 小鼠 | 环磷酰胺12×1+白消安1.2×1 | 1 (1.08) | |
连续超促排法 | 随着排卵周期的重复,消耗卵巢内始基卵泡数量,卵母细胞的数量显著减少,减少线粒体DNA的含量等[ | 10个周期(3次注射为一个完整超排周期) | 小鼠 | 孕马血清促性腺激素5×1+人绒毛膜促性腺激素5×1+前列腺素F2α25×1a | 1 (1.08) | |
氢化可的松造模法 | 卵巢皮质始基卵泡和各级卵泡稀少,正常形态的卵泡也较少,闭锁卵泡明显增多,细胞间隙增大[ | 15 d | 大鼠 | 20×1 | 1 (1.08) | |
环境 Environment | 去氧乙烯基环己烯造模法 | 去氧乙烯基环己烯有特异性卵巢毒性,能够通过加速原始卵泡到初级卵泡的募集,降低抗米勒管激素的(AMH)表达水平[ | 15 d | 大鼠 | 80×4; 160×1 | 6 (6.45) |
小鼠 | 160×1 | |||||
双酚A造模法 | 双酚A暴露会影响卵泡的生长发育,降低卵母细胞的质量,干扰颗粒细胞类固醇激素的分泌,造成卵巢功能减退[ | 每天1次,每周连续染毒5 d,共12周 | 大鼠 | 100×1 | 1 (1.08) | |
应激 Stress | 不可预知性慢性应激 | 通过不可预知性慢性应激,使得动情周期延长,并造成卵巢和子宫的损伤,发现原始卵泡、窦前卵泡以及黄体的数量显著减少等[ | 56 d | 小鼠 | / | 3 (3.23) |
自然老化 Natural aging | 自然年龄老化动物模型法 | 随着年龄增大,卵泡数量急剧下降,卵泡闭锁加速,卵巢储备功能下降[ | 小鼠 | / | 5 (5.38) | |
大鼠 | / | |||||
复合因素造模 Multiple factors | 序贯连续超排卵以及臭氧吸入 | 序贯连续超排卵消耗卵巢内始基卵泡数量,同时再结合强氧化剂,即臭氧吸入的方法,增加体内氧化应激压力,从而使卵泡质量降低[ | 10个周期(3次注射为一个完整超排周期) | 小鼠 | 孕马血清促性腺激素5×3+人绒毛膜促性腺激素5×3+前列腺素F2α25×3+臭氧浓度2.8×3ab | 3 (3.23) |
病证结合 Disease– syndrome combination | 雷公藤多苷片联合慢性不可预知温和刺激法 | 具有肾虚肝郁倾向,可在一定程度上反映本病的临床特征[ | 21 d | 大鼠 | 50×1; 75×1 | 2 (2.15) |
半乳糖联合制动应激法 | 从动物的宏观表征中评价动物证候属性,说明颈背注射半乳糖联合制动应激可以制备肝郁脾虚型卵巢储备功能减退模型[ | 14 d | 小鼠 | 20 000×1 | 1 (1.08) | |
免疫性 Immune | 免疫强化试剂 | 卵母细胞透明带形态异常是影响卵子质量的一个重要因素[ | 14 d | 小鼠 | 免疫试剂0.15×1; 免疫强化试剂0.15 ×1c | 1 (1.08) |
Table 1 Summary of modeling methods of diminished ovarian reserve animal models
造模因素 Modeling factor | 造模方法 Modeling method | 模型原理 Models principle | 造模周期 Modeling cycle | 动物 Animal | 药物剂量及使用频次 Dose/(mg·kg-1)× frequency | 造模总频次(占比) Total modeing frequency (percentage/%) |
---|---|---|---|---|---|---|
医源性 Iatrogenic | 雷公藤制剂造模法 | 抑制卵泡颗粒细胞的活性,促使卵巢功能减退的发生[ | 14~30 d | 大鼠 | 50×28; 75×4; 55×2; 5×2; 75×1 | 38 (40.86) |
小鼠 | 40×1 | |||||
环磷酰胺造模法 | 环磷酰胺具有明显的卵巢毒性,可以严重影响卵巢的结构及细胞增殖,对卵巢产生不可逆性的损伤,导致卵巢原始卵泡减少,卵泡永久性闭锁[ | 1~14次 | 大鼠 | 75×16; 90×1; 50×2; 50×1+8×1 | 28 (30.11) | |
小鼠 | 1.8×1 | |||||
顺铂造模法 | 顺铂对卵巢具有毒性作用,其主要损害卵巢皮质和颗粒细胞,诱导卵母细胞凋亡,导致卵泡数减少,加速卵泡闭锁[ | 单次 | 大鼠 | 5×1 | 2 (2.15) | |
小鼠 | 3×1 | |||||
环磷酰胺联合白消安 | 抑制DNA、RNA和蛋白质的合成,对卵巢功能造成损伤[ | 单次 | 小鼠 | 环磷酰胺12×1+白消安1.2×1 | 1 (1.08) | |
连续超促排法 | 随着排卵周期的重复,消耗卵巢内始基卵泡数量,卵母细胞的数量显著减少,减少线粒体DNA的含量等[ | 10个周期(3次注射为一个完整超排周期) | 小鼠 | 孕马血清促性腺激素5×1+人绒毛膜促性腺激素5×1+前列腺素F2α25×1a | 1 (1.08) | |
氢化可的松造模法 | 卵巢皮质始基卵泡和各级卵泡稀少,正常形态的卵泡也较少,闭锁卵泡明显增多,细胞间隙增大[ | 15 d | 大鼠 | 20×1 | 1 (1.08) | |
环境 Environment | 去氧乙烯基环己烯造模法 | 去氧乙烯基环己烯有特异性卵巢毒性,能够通过加速原始卵泡到初级卵泡的募集,降低抗米勒管激素的(AMH)表达水平[ | 15 d | 大鼠 | 80×4; 160×1 | 6 (6.45) |
小鼠 | 160×1 | |||||
双酚A造模法 | 双酚A暴露会影响卵泡的生长发育,降低卵母细胞的质量,干扰颗粒细胞类固醇激素的分泌,造成卵巢功能减退[ | 每天1次,每周连续染毒5 d,共12周 | 大鼠 | 100×1 | 1 (1.08) | |
应激 Stress | 不可预知性慢性应激 | 通过不可预知性慢性应激,使得动情周期延长,并造成卵巢和子宫的损伤,发现原始卵泡、窦前卵泡以及黄体的数量显著减少等[ | 56 d | 小鼠 | / | 3 (3.23) |
自然老化 Natural aging | 自然年龄老化动物模型法 | 随着年龄增大,卵泡数量急剧下降,卵泡闭锁加速,卵巢储备功能下降[ | 小鼠 | / | 5 (5.38) | |
大鼠 | / | |||||
复合因素造模 Multiple factors | 序贯连续超排卵以及臭氧吸入 | 序贯连续超排卵消耗卵巢内始基卵泡数量,同时再结合强氧化剂,即臭氧吸入的方法,增加体内氧化应激压力,从而使卵泡质量降低[ | 10个周期(3次注射为一个完整超排周期) | 小鼠 | 孕马血清促性腺激素5×3+人绒毛膜促性腺激素5×3+前列腺素F2α25×3+臭氧浓度2.8×3ab | 3 (3.23) |
病证结合 Disease– syndrome combination | 雷公藤多苷片联合慢性不可预知温和刺激法 | 具有肾虚肝郁倾向,可在一定程度上反映本病的临床特征[ | 21 d | 大鼠 | 50×1; 75×1 | 2 (2.15) |
半乳糖联合制动应激法 | 从动物的宏观表征中评价动物证候属性,说明颈背注射半乳糖联合制动应激可以制备肝郁脾虚型卵巢储备功能减退模型[ | 14 d | 小鼠 | 20 000×1 | 1 (1.08) | |
免疫性 Immune | 免疫强化试剂 | 卵母细胞透明带形态异常是影响卵子质量的一个重要因素[ | 14 d | 小鼠 | 免疫试剂0.15×1; 免疫强化试剂0.15 ×1c | 1 (1.08) |
用于模型评价的检测方法 Detection methods for model evaluation | 总频次(占比/%) Total frequency(percentage/%) |
---|---|
阴道脱落细胞学检测 Vaginal exfoliation cytology detection | 93 (23.97) |
HE染色观察组织病理变化 HE staining to observe histopathological changes | 72 (18.56) |
ELISA法检测血清性激素水平 ELISA to detect the serum sex hormone levels | 65 (16.75) |
免疫组织化学法检测卵巢组织中相关蛋白表达 Immunohistochemistry to detect the expression of related protein in ovarian tissue | 33 (8.51) |
蛋白质印迹法检测卵巢组织中相关蛋白表达量 Western blot to detect the expression of related protein in ovarian tissue | 30 (7.73) |
计算卵巢系数 Ovarian coefficient | 25 (6.44) |
观察一般情况 General situations | 24 (6.19) |
实时荧光定量PCR法检测卵巢组织相关mRNA表达 qRT-PCR to detect the expression of related mRNA in ovarian tissue | 15 (3.87) |
反转录PCR检测大鼠卵巢组织相关mRNA转录水平的变化情况 RT-PCR to detect the changes of mRNA transcription levels in ovarian tissue | 13 (3.35) |
放射免疫法检测血清激素水平变化 Radioimmunoassay to detect changes in serum hormone levels | 12 (3.09) |
ELISA法检测卵巢组织中生长生化因子等的含量 ELISA to detect the growth biochemical factor levels in ovarian tissue | 6 (1.55) |
合计 Sum | 388 (100) |
Table 2 Statistics of high-frequency detection methods in diminished ovarian reserve animal model
用于模型评价的检测方法 Detection methods for model evaluation | 总频次(占比/%) Total frequency(percentage/%) |
---|---|
阴道脱落细胞学检测 Vaginal exfoliation cytology detection | 93 (23.97) |
HE染色观察组织病理变化 HE staining to observe histopathological changes | 72 (18.56) |
ELISA法检测血清性激素水平 ELISA to detect the serum sex hormone levels | 65 (16.75) |
免疫组织化学法检测卵巢组织中相关蛋白表达 Immunohistochemistry to detect the expression of related protein in ovarian tissue | 33 (8.51) |
蛋白质印迹法检测卵巢组织中相关蛋白表达量 Western blot to detect the expression of related protein in ovarian tissue | 30 (7.73) |
计算卵巢系数 Ovarian coefficient | 25 (6.44) |
观察一般情况 General situations | 24 (6.19) |
实时荧光定量PCR法检测卵巢组织相关mRNA表达 qRT-PCR to detect the expression of related mRNA in ovarian tissue | 15 (3.87) |
反转录PCR检测大鼠卵巢组织相关mRNA转录水平的变化情况 RT-PCR to detect the changes of mRNA transcription levels in ovarian tissue | 13 (3.35) |
放射免疫法检测血清激素水平变化 Radioimmunoassay to detect changes in serum hormone levels | 12 (3.09) |
ELISA法检测卵巢组织中生长生化因子等的含量 ELISA to detect the growth biochemical factor levels in ovarian tissue | 6 (1.55) |
合计 Sum | 388 (100) |
1 | PASTORE L M, CHRISTIANSON M S, STELLING J, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR[J]. J Assist Reprod Genet, 2018, 35(1):17-23. DOI: 10.1007/s10815-017-1058-4 . |
2 | DEVINE K, MUMFORD S L, WU M, et al. Diminished ovarian reserve in the United States assisted reproductive technology population: diagnostic trends among 181, 536 cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System[J]. Fertil Steril, 2015, 104(3):612-619.e3. DOI: 10.1016/j.fertnstert. 2015. 05.017 . |
3 | 梁程程, 杨红, 齐聪, 等. 氧化应激对卵巢储备功能下降的影响及中西医抗氧化治疗研究进展[J]. 中国中西医结合杂志, 2021, 41(7):885-889. DOI: 10.7661/j.cjim.20201120.370 . |
LIANG C C, YANG H, QI C, et al. Effect of oxidative stress on the decline of ovarian reserve function and research progress of antioxidant therapy in traditional Chinese and western medicine[J]. Chin J Integr Tradit West Med, 2021, 41(7):885-889. DOI: 10.7661/j.cjim.20201120.370 . | |
4 | 辛明蔚, 李玛建, 何军琴, 等. 资坤汤治疗卵巢储备功能下降月经后期阴虚血燥证的临床观察[J]. 中国实验方剂学杂志, 2020, 26(13):138-143. DOI: 10.13422/j.cnki.syfjx.20201329 . |
XIN M W, LI M J, HE J Q, et al. Clinical observation of zikun decoction in treatment of syndrome of Yin deficiency and blood dryness in delayed menorrhea cycle due to decreasing ovarian reservation[J]. China Ind Econ, 2020, 26(13):138-143. DOI: 10.13422/j.cnki.syfjx.20201329 . | |
5 | 苗明三, 朱飞鹏. 常用医药研究动物模型[M]. 北京: 人民卫生出版社, 2007. |
MIAO M S, ZHU F P. Commonly used animal models for pharmaceutical research[M]. Beijing: People's Health Publishing House, 2007. | |
6 | 顾仁艳, 何丽, 张秋梅, 等. 滋阴温阳序贯方对卵巢功能减退动物模型的调节作用[J]. 吉林中医药, 2022, 42(10):1189-1194. DOI: 10.13463/j.cnki.jlzyy.2022.10.018 . |
GU R Y, HE L, ZHANG Q M, et al. Regulatory effect of the prescription for nourishing Yin and warming Yang in a sequential way on the animal model of ovarian[J]. Jilin J Tradit Chin Med, 2022, 42(10):1189-1194. DOI: 10.13463/j.cnki.jlzyy.2022.10.018 . | |
7 | VERMA S, GOLDAMMER T, AITKEN R. Cloning and expression of activation induced cytidine deaminase from Bos taurus [J]. Vet Immunol Immunopathol, 2010, 134(3-4):151-159. DOI: 10.1016/j.vetimm.2009.08.016 . |
8 | SPEARS N, LOPES F, STEFANSDOTTIR A, et al. Ovarian damage from chemotherapy and current approaches to its protection[J]. Hum Reprod Update, 2019, 25(6):673-693. DOI: 10.1093/humupd/dmz027 . |
9 | 张双, 周惠芳, 刘玉楠, 等. 加味地黄汤调控Bcl-2相关线粒体凋亡信号通路改善小鼠卵巢储备功能的研究[J]. 中国中药杂志, 2021, 46(24):6493-6501. DOI: 10.19540/j.cnki.cjcmm.20210823.401 . |
ZHANG S, ZHOU H F, LIU Y N, et al. Modified Dihuang Decoction improves ovarian reserve in mice by regulating Bcl-2-related mitochondrial apoptosis pathway[J]. China J Chin Mater Med, 2021, 46(24):6493-6501. DOI: 10.19540/j.cnki.cjcmm.20210823.401 . | |
10 | MIYAMOTO K, SATO E F, KASAHARA E, et al. Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria[J]. Free Radic Biol Med, 2010, 49(4):674-681. DOI: 10.1016/j.freeradbiomed.2010.05.025 . |
11 | 罗小光, 夏佩, 胡选霞. 穴位埋线和中药预防治疗雌性大鼠卵巢储备功能下降及卵巢早衰的实验研究[J]. 中华中医药杂志, 2014, 29(2):423-426. |
LUO X G, XIA P, HU X X. Experimental study on prevention and treatment of decline in ovarian reserve or premature ovarian failure in female rats with catgut implantation at acupoint and Chinese medicine[J]. China J Tradit Chin Med Pharm, 2014, 29(2):423-426. | |
12 | 俞舒丹, 何欣, 史航毓, 等. 不同时机电针对卵巢损伤大鼠卵巢储备功能的影响[J]. 中国中医基础医学杂志, 2022, 28(8):1254-1258. DOI: 10.3969/j.issn.2095-8552.2021.03.039 . |
YU S D, HE X, SHI H Y, et al. Effects of electroacupuncture on ovarian reserve function of ovarian injury rats at different time-point[J]. Chin J Basic Med Tradit Chin Med, 2022, 28(8):1254-1258. DOI: 10.3969/j.issn.2095-8552.2021.03.039 . | |
13 | 陈宝红. 双酚A与早发性卵巢功能不全相关性的研究进展[J]. 安徽医学, 2022, 43(11): 1348-1351. DOI: 10.3969/j.issn.1000-0399.2022.11.024 . |
CHEN B H. Research progress on the correlation between bisphenol A and early-onset ovarian insufficiency[J]. Anhui Med J, 2022, 43(11): 1348-1351. DOI: 10.3969/j.issn.1000-0399.2022.11.024 . | |
14 | GAO L Y, ZHAO F G, ZHANG Y, et al. Diminished ovarian reserve induced by chronic unpredictable stress in C57BL/6 mice[J]. Gynecol Endocrinol, 2020, 36(1):49-54. DOI: 10.1080/09513590.2019.1631274 . |
15 | 程萌, 孔令伶俐, 许良智, 等. 卵巢储备功能减退临床诊治专家共识解读[J]. 实用妇产科杂志, 2022, 38(10): 743-745. DOI: 10.3969/j.issn.1004-3845.2022.04.001 . |
CHENG M, KONG L L L, XU L Z, et al. Interpretation of expert consensus on clinical diagnosis and treatment of ovarian reserve hypofunction[J]. J Pract Obstet Gynecol, 2022, 38(10): 743-745. DOI: 10.3969/j.issn.1004-3845.2022.04.001 . | |
16 | 崔丹丹, 马雯雯, 文露, 等. 归肾丸对卵巢储备功能低下小鼠卵巢Oct-4、MVH及Egr-1表达的影响[J]. 中国中西医结合杂志, 2015, 35(1): 76-80. DOI: 10.7661/CJIM.2015.01.0076 . |
CUI D D, MA W W, WEN L, et al. Effect of Guishen pill on expression of oct-4, MVH and egr-1 in ovary of mice with low ovarian reserve function[J]. Chin J Integr Tradit West Med, 2015, 35(1): 76-80. DOI: 10.7661/CJIM.2015.01.0076 . | |
17 | 李艳华, 姜威, 刘君, 等. 补肾疏肝方联合五行音乐对卵巢储备功能减退大鼠的实验研究[J]. 天津中医药, 2021, 38(5):648-653. DOI: 10.11656/j.issn.1672-1519.2021.05.22 . |
LI Y H, JIANG W, LIU J, et al. Experimental study on Bushen Shugan Decoction combined with five elements music on rats with decreased ovarian reserve[J]. Tianjin J of Tradit Chin Med, 2021, 38(5):648-653. DOI: 10.11656/j.issn.1672-1519.2021.05.22 . | |
18 | 刘柳青, 刘雁峰, 潘雪, 等. 补肾调肝方对卵巢储备功能下降大鼠卵巢/海马功能及PI3K/AKT/mTOR信号通路的影响[J]. 环球中医药, 2021, 14(5):822-829. DOI: 10.3969/j.issn.1674-1749.2021.05.008 . |
LIU L Q, LIU Y F, PAN X, et al. Effects of Bushen Tiaogan formula on ovarian and hippocampal function and PI3K/AKT/mTOR signal pathway in rats with diminished ovarian reserve[J]. Global Tradit Chin Med, 2021, 14(5):822-829. DOI: 10.3969/j.issn.1674-1749.2021.05.008 . | |
19 | 蒋姗珊, 王亚静, 庞俏燕, 等. 当归芍药散对卵巢储备功能下降小鼠PI3K/AKT/FOXO3a信号通路的影响[J]. 时珍国医国药, 2021, 32(6):1335-1338. DOI: 10.3969/j.issn.1008-0805.2021.06.15 . |
JIANG S S, WANG Y J, PANG Q Y, et al. Effect of Danggui Shaoyao Powder on PI3K/AKT/FOXO3a signal pathway in mice with decreased ovarian reserve function[J]. Lishizhen Med Mater Med Res, 2021, 32(6):1335-1338. DOI: 10.3969/j.issn.1008-0805.2021.06.15 . | |
20 | 冯桂玲, 李静, 周小琳. 补肾健脾方对免疫性卵巢功能衰退小鼠性激素及卵子质量的影响[J]. 中医杂志, 2016, 57(16):1416-1420. DOI: 10.13288/j.11-2166/r.2016.16.017 . |
FENG G L, LI J, ZHOU X L. Effect of Bushen Jianpi Fang(补肾健脾方)on sex hormone and oocyte quality in mice with immune ovarian function decline[J]. J of Tradit Chin Med, 2016, 57(16):1416-1420. DOI: 10.13288/j.11-2166/r.2016.16.017 . | |
21 | 秦川, 魏泓. 实验动物学[M]. 2版. 北京: 人民卫生出版社, 2015. |
QING C, WEI H. Laboratory animal science[M]. 2nd ed.Beijing: People's Health Publishing House, 2015. | |
22 | 陆星星, 任豆豆, 徐华洲, 等. 资癸益冲方对卵巢储备功能下降模型大鼠卵巢氧化损伤的影响及其作用机制[J]. 北京中医药大学学报, 2020, 43(7):561-568. DOI: 10.3969/j.issn.1006-2157.2020.07.007 . |
LU X X, REN D D, XU H Z, et al. Effects of Zigui Yichong Formula on ovarian oxidative damage in rats with diminished ovarian reserve and its mechanism[J]. J of Beijing Univ of Tradit Chin Med, 2020, 43(7):561-568. DOI: 10.3969/j.issn.1006-2157.2020.07.007 . | |
23 | 陈燕霞, 袁苑, 马堃, 等. 定坤丹对雷公藤多苷诱导卵巢储备功能低下小鼠性激素和卵泡计数的影响[J]. 中国实验方剂学杂志, 2020, 26(14):78-84. DOI: 10.13422/j.cnki.syfjx.20201339 . |
CHEN Y X, YUAN Y, MA K, et al. Effect of dingkundan on sex hormone and follicle count in mice of Tripterygium wilfordii polyglycosides induced diminished ovarian reserve[J]. China Ind Econ, 2020, 26(14):78-84. DOI: 10.13422/j.cnki.syfjx.20201339 . | |
24 | 卢君, 何玉婷. 知柏地黄丸联合坤泰胶囊治疗卵巢储备功能低下患者的临床观察[J]. 中国临床药理学杂志, 2022, 38(20):2401-2405. DOI: 10.13699/j.cnki.1001-6821.2022.20.004 . |
LU J, HE Y T. Clinical observation of Zhibai Dihuang pill combined with Kuntai capsule in the treatment patients of low ovarian reserve[J]. Chin J Clin Pharmacol, 2022, 38(20):2401-2405. DOI: 10.13699/j.cnki.1001-6821.2022.20.004 . |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
[3] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[4] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[5] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
[6] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
[7] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
[8] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[9] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
[10] | LIU Liyu, JI Bo, LIU Xiaoxuan, FANG Yang, ZHANG Ling, GUO Tingting, QUAN Ye, LI Hewen, LIU Yitian. Exploration of Rat Fetal Lung Tissue Fixation Methods [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 432-438. |
[11] | TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. |
[12] | HU Min, DONG Lexuan, GAO Yi, XI Ziqi, SHEN Zihao, TANG Ruiyang, LUAN Xin, TANG Min, ZHANG Weidong. Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 318-330. |
[13] | XIAO Linlin, YANG Yixuan, LI Shanshan, LUO Lanshiyu, YIN Siwei, SUN Juming, SHI Wei, OUYANG Yiqiang, LI Xiyi. Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 269-278. |
[14] | LUO Lianlian, YUAN Yanchun, WANG Junling, SHI Guangsen. Advances in Mouse Models of Amyotrophic Lateral Sclerosis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 290-299. |
[15] | JIANG Meng, HAO Shulan, TONG Liguo, ZHONG Qiming, GAO Zhenfei, WANG Yonghui, WANG Xixing, JI Haijie. Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 251-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||