Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (3): 309-317.DOI: 10.12300/j.issn.1674-5817.2024.164
• Animal Experimental Techniques and Methods • Previous Articles Next Articles
TAN Dengxu1,2(), MA Yifan1, LIU Ke1, ZHANG Yanying1(
)(
), SHI Changhong2(
)(
)
Received:
2024-11-07
Revised:
2025-02-06
Online:
2025-06-25
Published:
2025-07-07
Contact:
ZHANG Yanying, SHI Changhong
CLC Number:
TAN Dengxu,MA Yifan,LIU Ke,et al. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. DOI: 10.12300/j.issn.1674-5817.2024.164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.164
比较维度 Comparison dimension | 类器官共培养模型 Organoid co-culture model | 实验动物模型 Laboratory animal model |
---|---|---|
复杂性 Complexity | 低:可控的细胞组成和环境 | 高:系统的生物复杂性 |
伦理问题 Ethical issues | 较少:不涉及活体动物 | 较多:动物实验伦理问题 |
时间成本 Time cost | 较短:快速获取结果 | 较长:动物的生长与繁殖 |
生理相关性 Physiological relevance | 较低:缺乏全身系统 | 高:能反映全身生理状态 |
研究范围 Scope of research | 细胞和局部微环境的研究 | 全身生理和行为的研究 |
疾病建模 Disease modeling | 对人类特异性疾病建模具有高度准确性 | 受物种差异限制 |
药物测试 Drug testing | 精确测试人类特异性的药物反应;高通量 | 全身药代动力学数据 |
Table 1 Multidimensional comparison between organoid co-culture models and laboratory animal models
比较维度 Comparison dimension | 类器官共培养模型 Organoid co-culture model | 实验动物模型 Laboratory animal model |
---|---|---|
复杂性 Complexity | 低:可控的细胞组成和环境 | 高:系统的生物复杂性 |
伦理问题 Ethical issues | 较少:不涉及活体动物 | 较多:动物实验伦理问题 |
时间成本 Time cost | 较短:快速获取结果 | 较长:动物的生长与繁殖 |
生理相关性 Physiological relevance | 较低:缺乏全身系统 | 高:能反映全身生理状态 |
研究范围 Scope of research | 细胞和局部微环境的研究 | 全身生理和行为的研究 |
疾病建模 Disease modeling | 对人类特异性疾病建模具有高度准确性 | 受物种差异限制 |
药物测试 Drug testing | 精确测试人类特异性的药物反应;高通量 | 全身药代动力学数据 |
[1] | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1):168. DOI:10.1038/s41392-022-01024-9 . |
[2] | JEYA VANDANA J, MANRIQUE C, LACKO L A, et al. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation[J]. Cell Stem Cell, 2023, 30(5):571-591. DOI:10.1016/j.stem.2023.04.011 . |
[3] | YANG H, CHENG J H, ZHUANG H, et al. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer[J]. Cancer Cell, 2024, 42(4):535-551.e8. DOI:10.1016/j.ccell.2024.03.004 . |
[4] | GAO S T, SHEN J, HORNICEK F, et al. Three-dimensional (3D) culture in sarcoma research and the clinical significance[J]. Biofabrication, 2017, 9(3):032003. DOI:10.1088/1758-5090/aa7fdb . |
[5] | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. DOI:10.1038/nature07935 . |
[6] | EICHMÜLLER O L, KNOBLICH J A. Human cerebral organoids - a new tool for clinical neurology research[J]. Nat Rev Neurol, 2022, 18(11):661-680. DOI:10.1038/s41582-022-00723-9 . |
[7] | WANG S Y, WANG X, TAN Z L, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury[J]. Cell Res, 2019, 29(12):1009-1026. DOI:10.1038/s41422-019-0242-8 . |
[8] | LIM K, DONOVAN A P A, TANG W, et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease[J]. Cell Stem Cell, 2023, 30(1):20-37.e9. DOI:10.1016/j.stem.2022.11.013 . |
[9] | NISHINAKAMURA R. Advances and challenges toward developing kidney organoids for clinical applications[J]. Cell Stem Cell, 2023, 30(8):1017-1027. DOI:10.1016/j.stem.2023. 07.011 . |
[10] | CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7):1586-1597. DOI:10.1016/j.cell.2016.05.082 . |
[11] | EDMONDSON R, BROGLIE J J, ADCOCK A F, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors[J]. Assay Drug Dev Technol, 2014, 12(4):207-218. DOI:10.1089/adt.2014.573 . |
[12] | HOFER M, LUTOLF M P. Engineering organoids[J]. Nat Rev Mater, 2021, 6(5):402-420. DOI:10.1038/s41578-021-00279-y . |
[13] | KIM J, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10):571-584. DOI:10.1038/s41580-020-0259-3 . |
[14] | ANDREWS M G, KRIEGSTEIN A R. Challenges of organoid research[J]. Annu Rev Neurosci, 2022, 45:23-39. DOI:10.1146/annurev-neuro-111020-090812 . |
[15] | BREDENOORD A L, CLEVERS H, KNOBLICH J A. Human tissues in a dish: the research and ethical implications of organoid technology[J]. Science, 2017, 355(6322): eaaf9414. DOI:10.1126/science.aaf9414 . |
[16] | ZHOU Z Z, PANG Y, JI J Y, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies[J]. Nat Rev Immunol, 2024, 24(1):18-32. DOI:10.1038/s41577-023-00896-4 . |
[17] | NEAL J T, LI X N, ZHU J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16. DOI:10.1016/j.cell.2018.11.021 . |
[18] | PUSCHHOF J, PLEGUEZUELOS-MANZANO C, MARTINEZ-SILGADO A, et al. Intestinal organoid cocultures with microbes[J]. Nat Protoc, 2021, 16(10):4633-4649. DOI:10.1038/s41596-021-00589-z . |
[19] | ZHANG J, TAVAKOLI H, MA L, et al. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment[J]. Adv Drug Deliv Rev, 2022, 187:114365. DOI:10.1016/j.addr.2022.114365 . |
[20] | GABBIN B, MERAVIGLIA V, ANGENENT M L, et al. Heart and kidney organoids maintain organ-specific function in a microfluidic system[J]. Mater Today Bio, 2023, 23:100818. DOI:10.1016/j.mtbio.2023.100818 . |
[21] | TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444):952-955. DOI:10.1126/science.aaw6985 . |
[22] | ATANASOVA V S, DE JESUS CARDONA C, HEJRET V, et al. Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(6):1391-1419. DOI:10.1016/j.jcmgh.2023.02.014 . |
[23] | JIANG S W, DENG T W, CHENG H, et al. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine resistance[J]. J Exp Clin Cancer Res, 2023, 42(1):199. DOI:10.1186/s13046-023-02756-4 . |
[24] | SCHUTH S, LE BLANC S, KRIEGER T G, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system[J]. J Exp Clin Cancer Res, 2022, 41(1):312. DOI:10.1186/s13046-022-02519-7 . |
[25] | KIM M B, HWANGBO S, JANG S, et al. Bioengineered co-culture of organoids to recapitulate host-microbe interactions[J]. Mater Today Bio, 2022, 16:100345. DOI:10.1016/j.mtbio.2022.100345 . |
[26] | WILSON S S, TOCCHI A, HOLLY M K, et al. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions[J]. Mucosal Immunol, 2015, 8(2):352-361. DOI:10.1038/mi.2014.72 . |
[27] | HAN Y L, DUAN X H, YANG L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841):270-275. DOI:10.1038/s41586-020-2901-9 . |
[28] | LI M H, GAO L X, ZHAO L, et al. Toward the next generation of vascularized human neural organoids[J]. Med Res Rev, 2023, 43(1):31-54. DOI:10.1002/med.21922 . |
[29] | HUANG S C, ZHANG Z, CAO J W, et al. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer's tau pathology[J]. Signal Transduct Target Ther, 2022, 7(1):176. DOI:10.1038/s41392-022-01006-x . |
[30] | MORRONE PARFITT G, COCCIA E, GOLDMAN C, et al. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson's disease model[J]. Nat Commun, 2024, 15(1):447. DOI:10.1038/s41467-024-44732-2 . |
[31] | YANG R X, YU Y Y. Patient-derived organoids in translational oncology and drug screening[J]. Cancer Lett, 2023, 562:216180. DOI:10.1016/j.canlet.2023.216180 . |
[32] | NAKAZAWA Y, MIYANO M, TSUKAMOTO S, et al. Delivery of a BET protein degrader via a CEACAM6-targeted antibody-drug conjugate inhibits tumour growth in pancreatic cancer models[J]. Nat Commun, 2024, 15(1):2192. DOI:10.1038/s41467-024-46167-1 . |
[33] | YU L, LI Z C, MEI H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro [J]. Clin Transl Immunology, 2021, 10(2): e1248. DOI:10.1002/cti2.1248 . |
[34] | MU P Y, ZHOU S J, LV T, et al. Newly developed 3D in vitro models to study tumor-immune interaction[J]. J Exp Clin Cancer Res, 2023, 42(1):81. DOI:10.1186/s13046-023-02653-w . |
[35] | SONG T Y, KONG B, LIU R, et al. Bioengineering approaches for the pancreatic tumor organoids research and application[J]. Adv Healthc Mater, 2024, 13(1):2300984. DOI:10.1002/adhm.202300984 . |
[36] | HARTUNG T. Thoughts on limitations of animal models[J]. Parkinsonism Relat Disord, 2008, 14(): S81-S83. DOI:10.1016/j.parkreldis.2008.04.003 . |
[37] | DONCHEVA N T, PALASCA O, YARANI R, et al. Human pathways in animal models: possibilities and limitations[J]. Nucleic Acids Res, 2021, 49(4):1859-1871. DOI:10.1093/nar/gkab012 . |
[38] | CORSINI N S, KNOBLICH J A. Human organoids: New strategies and methods for analyzing human development and disease[J]. Cell, 2022, 185(15):2756-2769. DOI:10.1016/j.cell.2022.06.051 . |
[39] | GRIBBEN C, GALANAKIS V, CALDERWOOD A, et al. Acquisition of epithelial plasticity in human chronic liver disease[J]. Nature, 2024, 630(8015):166-173. DOI:10.1038/s41586-024-07465-2 . |
[40] | VITALE S, CALAPÀ F, COLONNA F, et al. Advancements in 3D in vitro models for colorectal cancer[J]. Adv Sci, 2024, 11(32): e2405084. DOI:10.1002/advs.202405084 . |
[1] | SHEN Huangyi, HUANG Yufei, YANG Yunpeng. Research Progress on Characteristics Analysis of Gut Microbiota and Its Sex Differences in Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 349-359. |
[2] | LIU Lida, CHEN Bing, XIE Na, LIU Li, ZHUANG Siqi, ZOU Yixing. Survey Report Analysis on Parasitic and Microbial Quality of Laboratory Animals in Sichuan Province, 2017-2023 [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 654-660. |
[3] | LIU Yishu, CAI Liping. Advances and Challenges of Using Experimental Pigs in Da Vinci Surgical Robot Training [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 667-674. |
[4] | CHEN Bing, ZOU Yixing, WANG Jingdong. Analysis on Current Status and Countermeasures for Laboratory Animal Management in Sichuan Province Based on Administrative Licensing [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 560-566. |
[5] | ZHAO Yong. Three Dimensions of Animal Experiment Ethics: Analysis Based on Value of Life, Animal Welfare, and Risk Prevention [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 445-454. |
[6] | DENG Shaochang, LIN Danrong, LIANG Chujun, LEI Weiqiao, YANG Jinchun, ZHAO Weibo. Analysis of Institutional Characteristics and Implementation of Guangdong Province Laboratory Animals Ordinance in the Past Decade [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 455-462. |
[7] | SUN Qiang. History, Current Status, Challenges and Opportunities of Laboratory Monkey Industry in China [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 343-356. |
[8] | Lingzhi YU, Xiaofeng WEI, Ming LI, Zhihao KONG. Comparison of Methods between Soiled Bedding Sentinels and Exhaust Air Dust PCR for Health Monitoring of Rodent Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 321-327. |
[9] | Meitong LIU, Zhang CHEN, Zhaoqiang ZHANG, Di FAN, Zhan HU, Hailing MA. Formulation of Emergency Response Plan for Laboratory Animal Biosafety Emergencies in Hunan Province [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 328-334. |
[10] | Meitong LIU, Zhang CHEN, Zhaoqiang ZHANG, Di FAN, Zhan HU, Hailing MA. Investigation on Current Biosafety Management Status in Laboratory Animal Institutions in Hunan Province [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 202-208. |
[11] | Bing CHEN, Yixing ZOU, Lingyun YAO, Jingdong WANG. Research on Management Policies of Laboratory Animals in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 209-213. |
[12] | Yong ZHAO. Evolution and Prospects of Laboratory Animal Management: A Case Study of Shanghai's Development in the Past Decade [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 492-503. |
[13] | Lianxiang GUO. Revision of Standards for Microbiological and Parasitological Grades in Laboratory Animals and Its Comparison to Foreign Standards [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 339-346. |
[14] | Huan GOU, Xinying AN, Yujia TONG, Yan WANG, Shuang YANG. Analysis on the Development Status of Laboratory Animals in Japan [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 194-204. |
[15] | Chongyang QI, Lin CHEN, Man AI, Hang XU, Housen ZHANG. Safety Management Countermeasures Based on the Status of Laboratory Animal Administrative Licensing in Jiangsu Province [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 79-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||