Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (4): 322-332.DOI: 10.12300/j.issn.1674-5817.2022.041
• Animal Models of Human Diseases • Previous Articles Next Articles
Yanbing ZHU1,2(), Fan BAI3,4, Shaoxin TAO1,2, Yuhualei PAN1,2, Huan WANG1, Yushang ZHAO1, Song WANG1, Yan YU3,4(
)(
)
Received:
2022-03-29
Revised:
2022-05-19
Online:
2022-08-25
Published:
2022-08-25
Contact:
Yan YU
CLC Number:
Yanbing ZHU,Fan BAI,Shaoxin TAO,et al. Inhibition of Phospholipase D1 Activity Improves the Recovery of Neurological Function in Mice with Ischemic Stroke[J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 322-332. DOI: 10.12300/j.issn.1674-5817.2022.041.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.041
Figure 1 Expression of autophagy-related LC3 in the infracted cortex after ischemic stroke detected by Western blotting (A and B) and immunofluorescent staining (C and D)Note: A is the level of autophagy-related protein LC3 at different time points (4-72 h). B is the statistical analysis of the ratio of LC3-Ⅱ/β-actin at different time points (n=3 at each time point, *P<0.05). C is the morphology of LC3 in the sham group. D is the morphology of LC3 in 24-hour group after ischemic stroke (the arrow points for LC3-Ⅱ, and the scale bar is 10 μm).
Figure 2 Behavior tests reveal administration of 0.9 mg/kg FIPI after ischemic stroke obviously improves neurological function of miceNote: A, B, and C denote adhesive removal tests (detecting latency time of left paw); D, E, and F are whisker tests (detecting success percentage of left forelimb). A and D show the behavior tests on the 1st day; B and E show the behavior tests on the 3rd day; C and F show the behavior tests on the 7th day. n=6 in each group; *P<0.05, **P<0.01, ***P<0.001, ****P<0.000 1; ns, not significant. FIPI, 5-fluoro-2-indolyl deschlorohalopemide, is a phospholipase D inhibitor.
Figure 3 Expression of autophagy-related LC3 and the change in the infarcted cortex volume after FIPI inhibitor treatment are detected by Western blotting (A and B) and TTC staining (C and D)Note: A is the level of autophagy-related protein LC3 at different time points; B is the statistical analysis of the ratio of LC3-Ⅱ/β-actin (n=3 in each group, *P<0.05, **P<0.01). C is the TTC staining of the infarcted cortex in two groups; white color indicates the infarcted cortex and red color indicates the normal cortex; D is the statistical analysis of the infarcted cortex area (n=6 in each group, *P<0.05). FIPI, 5-fluoro-2-indolyl deschlorohalopemide, is a phospholipase D inhibitor.
Figure 4 Behavior tests reveal the administration of 0.9 mg/kg FIPI at different time points after ischemic stroke can improve the neurological function of miceNote: A, B, and C denote adhesive removal tests (detecting latency time of left paw); D, E, and F are whisker tests (detecting success percentage of left forelimb). A and D show the behavior tests on the 1st day; B and E show the behavior tests on the 3rd day; C and F show the behavior tests on the 7th day. n=6 in each group. *P<0.05, **P<0.01, ***P<0.001, ****P<0.000 1; ns, not significant. FIPI, 5-fluoro-2-indolyl deschlorohalopemide, is a phospholipase D inhibitor.
Figure 5 TTC staining reveals the administration of 0.9 mg/kg FIPI at different time points after ischemic stroke can reduce the volume of infarcted cortex of miceNote: A is the TTC staining of the infarcted cortex in different groups; white color indicates the infarcted cortex and red color indicates the normal cortex; B is the statistical analysis of the infarcted cortex volume (n=6 in each group,*P<0.05). FIPI, 5-fluoro-2-indolyl deschlorohalopemide, is a phospholipase D inhibitor.
1 | CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1):70. DOI:10.1038/s41572-019-0118-8 . |
2 | WANG P, SHAO B Z, DENG Z Q, et al. Autophagy in ischemic stroke[J]. Prog Neurobiol, 2018, 163-164:98-117. DOI: 10.1016/j.pneurobio.2018.01.001 . |
3 | HWANG J Y, GERTNER M, PONTARELLI F, et al. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to Die[J]. Cell Death Differ, 2017, 24(2):317-329. DOI:10.1038/cdd.2016.140 . |
4 | DALL'ARMI C, DEVEREAUX K A, DI PAOLO G. The role of lipids in the control of autophagy[J]. Curr Biol, 2013, 23(1): R33-R45. DOI:10.1016/j.cub.2012.10.041 . |
5 | PURI C, RENNA M, BENTO C F, et al. Diverse autophagosome membrane sources coalesce in recycling endosomes[J]. Cell, 2013, 154(6):1285-1299. DOI:10.1016/j.cell.2013.08.044 . |
6 | HUR J H, PARK S Y, DALL'ARMI C, et al. Phospholipase D1 deficiency in mice causes nonalcoholic fatty liver disease via an autophagy defect[J]. Sci Rep, 2016, 6:39170. DOI:10.1038/srep39170 . |
7 | DALL'ARMI C, HURTADO-LORENZO A, TIAN H, et al. The phospholipase D1 pathway modulates macroautophagy[J]. Nat Commun, 2010, 1:142. DOI:10.1038/ncomms1144 . |
8 | YOON M S. Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy[J]. Cell Commun Signal, 2015, 13:44. DOI:10.1186/s12964-015-0122-x . |
9 | ZHU Y B, KANG K, ZHANG Y, et al. PLD1 negatively regulates dendritic branching[J]. J Neurosci, 2012, 32(23):7960-7969. DOI:10.1523/jneurosci.5378-11.2012 . |
10 | ZHU Y B, GAO W, ZHANG Y, et al. Astrocyte-derived phosphatidic acid promotes dendritic branching[J]. Sci Rep, 2016, 6:21096. DOI:10.1038/srep21096 . |
11 | 陶少鑫, 朱彦兵, 于山平, 等. 小鼠缺血性脑卒中后磷脂酶D1在自噬和神经损伤中的作用[J]. 临床和实验医学杂志, 2019, 18(8): 790-794. DOI:10.3969/j.issn.1671-4695.2019.08.002 . |
TAO S X, ZHU Y B, YU S P, et al. Role of phospholipase D1 in autophagy and neuronal damage after focal ischemic stroke in mice[J]. J Clin Exp Med, 2019, 18(8): 790-794. DOI:10.3969/j.issn.1671-4695.2019.08.002 . | |
12 | KLIER M, GOWERT N S, JÄCKEL S, et al. Phospholipase D1 is a regulator of platelet-mediated inflammation[J]. Cell Signal, 2017, 38:171-181. DOI:10.1016/j.cellsig.2017.07.007 . |
13 | SU W, YEKU O, OLEPU S, et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis[J]. Mol Pharmacol, 2009, 75(3):437-446. DOI:10.1124/mol.108. 053298 . |
14 | HENKELS K M, MUPPANI N R, GOMEZ-CAMBRONERO J. PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases[J]. PLoS One, 2016, 11(11): e0166553. DOI:10.1371/journal.pone.0166553 . |
15 | MAO L L, LI P Y, ZHU W, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke[J]. Brain, 2017, 140(7):1914-1931. DOI:10.1093/brain/awx111 . |
16 | ANDREJEVA G, GOWAN S, LIN G, et al. De novo phosphatidylcholine synthesis is required for autopha-gosome membrane formation and maintenance during autophagy[J]. Autophagy, 2020, 16(6):1044-1060. DOI:10.1080/15548627.2019.1659608 . |
17 | CAI M, HE J, XIONG J, et al. Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells[J]. Cell Death Dis, 2016, 7(11): e2448. DOI:10.1038/cddis.2016.355 . |
18 | TIAN F, DEGUCHI K, YAMASHITA T, et al. In vivo imaging of autophagy in a mouse stroke model[J]. Autophagy, 2010, 6(8):1107-1114. DOI:10.4161/auto.6.8.13427 . |
19 | MARCHESAN D, RUTBERG M, ANDERSSON L, et al. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system[J]. J Biol Chem, 2003, 278(29):27293-27300. DOI:10.1074/jbc.m301430200 . |
20 | NGUYEN T B, OLZMANN J A. Lipid droplets and lipotoxicity during autophagy[J]. Autophagy, 2017, 13(11):2002-2003. DOI:10.1080/15548627.2017.1359451 . |
21 | MCDERMOTT M I, WANG Y, WAKELAM M J O, et al. Mammalian phospholipase D: function, and therapeutics[J]. Prog Lipid Res, 2020, 78:101018. DOI:10.1016/j.plipres. 2019.101018 . |
22 | BAE E J, LEE H J, JANG Y H, et al. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates[J]. Cell Death Differ, 2014, 21(7):1132-1141. DOI:10.1038/cdd. 2014.30 . |
23 | OLIVEIRA T G, CHAN R B, TIAN H, et al. Phospholipase d2 ablation ameliorates Alzheimer's disease-linked synaptic dysfunction and cognitive deficits[J]. J Neurosci, 2010, 30(49):16419-16428. DOI:10.1523/jneurosci.3317-10.2010 . |
24 | KIM S H, PARK M Y, YUN N J, et al. Targeting PLD2 in adipocytes augments adaptive thermogenesis by improving mitochondrial quality and quantity in mice[J]. J Exp Med, 2022, 219(2): e20211523. DOI:10.1084/jem.20211523 . |
25 | YUZHU W, DAN T, CHANGWEI W, et al. Propofol attenuates α-synuclein aggregation and neuronal damage in a mouse model of ischemic stroke [J]. Neurosci Bull, 2020, 36(3):289-298. DOI:10.1007/s12264-019-00426-0 |
[1] | Jia LIU, Yanrong YE, Yun SHEN, Qiying TANG, Meiqing CHEN, Kehui YI, Shaozhuang CHEN. Ginkgolide B Promotes Neural Function Recovery of Ischemic Stroke Mice by Regulating Characteristics of Brain T Cells and Their Interactions with Glial Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 139-148. |
[2] | Bo DONG, Jiaxin LIU, Wei XIONG, Songqi TANG, Wei HUANG. Progress in Animal Models of Ischemic Stroke [J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 54-61. |
[3] | SONG Binbin, DONG Wenzhou, JIA Bingquan, ZHEN Ran, PENG Yu, YANG Xuan, YU Jia. Expression and Distribution of Molecules Regulating Protein Degradation Pathway in Nervous System of Mice [J]. Laboratory Animal and Comparative Medicine, 2020, 40(6): 463-469. |
[4] | HE Dawei, HE Aolin, ZHOU Minghui, YU Yaping, ZHANG Minghua. Effects of Sodium Oxalate on Autophagy and Apoptosis of Cholangiocarcinoma Cells#br# [J]. Laboratory Animal and Comparative Medicine, 2020, 40(5): 403-. |
[5] | ZHU Huiqin, ZOU Yanqiong, YANG Jie, YI Jing, YANG Jie. Small Ubiquitin-like Modifier Specific Protease 3 Regulates Autophagy in Mouse Alveolar TypeⅡ Epithelial Cells [J]. Laboratory Animal and Comparative Medicine, 2020, 40(4): 270-. |
[6] | MIAO Jia-ning, LIU Bo, DING Jing-jing, WANG Li-li. Effects of Fhl1 Knockout on the Differentiation and Autophagy in Gastrocnemius Muscle in Mice of Different Ages [J]. Laboratory Animal and Comparative Medicine, 2019, 39(4): 274-279. |
[7] | LIANG Yong-jun, ZHANG Peng, WANG Yue-qian, GAO Li-li, CAO Ting, QIAO Zheng-dong. High-fat Diet Induced Type 2 Diabetes Mellitus and Obesity in C57BL/6 Mice [J]. Laboratory Animal and Comparative Medicine, 2016, 36(5): 361-364. |
[8] | LI Yuan, ZHANG Mei-ying. Research Progress on Autophagy with Parkinson Disease and Related Models [J]. Laboratory Animal and Comparative Medicine, 2015, 35(4): 335-340. |
[9] | ZHAO Shan-min, LIN Li-fang, XIAO Bang, WANG Yun-hui, GONG Chen, ZHANG Lu, YU Chen-lin, TANG Qiu, SUN Wei, CUI Shu-fang. Comparative Effects of Hypoxia on Autophagy and Apoptosis of Naked Mole Rat Fibroblasts [J]. Laboratory Animal and Comparative Medicine, 2014, 34(5): 405-410. |
[10] | LIN Li-fang, XIAO Bang, ZHAO Shan-min, TANG Qiu, YU Chen-lin, SUN Wei, ZHANG Lu, CAI Li-ping, XU Chen, CHENG Ji-shuai, CUI Shu-fang. The Effect of Poly I:C on Autophagy of Naked Mole Rat [J]. Laboratory Animal and Comparative Medicine, 2014, 34(5): 411-416. |
[11] | LIN Li-fang, ZHAO Yi-ning, ZHAO Shan-min, XU Chen, CUI Shu-fang. Comparative Study on Autophagy Regulation between Naked Mole Rat and C57BL/6 Mouse [J]. Laboratory Animal and Comparative Medicine, 2013, 33(4): 301-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||