Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (3): 207-212.DOI: 10.12300/j.issn.1674-5817.2021.121
• Animal Models of Human Diseases • Previous Articles Next Articles
Xiao LI(
), Haipeng YAN, Zhenghui XIAO(
)(
)
Received:2021-07-19
Revised:2021-11-22
Online:2022-06-25
Published:2022-06-25
Contact:
Zhenghui XIAO
CLC Number:
Xiao LI,Haipeng YAN,Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis[J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. DOI: 10.12300/j.issn.1674-5817.2021.121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.121
| 1 | FERNANDO S M, REARDON P M, ROCHWERG B, et al. Sepsis-3 septic shock criteria and associated mortality among infected hospitalized patients assessed by a rapid response team[J]. Chest, 2018, 154(2):309-316. DOI:10.1016/j.chest.2018.05.004 . |
| 2 | FLEISCHMANN C, SCHERAG A, ADHIKARI N K, et al. Assessment of global incidence and mortality of hospital-treated Sepsis. current estimates and limitations[J]. Am J Respir Crit Care Med, 2016, 193(3):259-272. DOI:10.1164/rccm.201504-0781oc . |
| 3 | 江伟, 杜斌. 中国脓毒症流行病学现状[J]. 医学研究生学报, 2019, 32(1):5-8. DOI:10.16571/j.cnki.1008-8199.2019.01.002 . |
| JIANG W, DU B. Epidemiology of sepsis in China[J]. J Med Postgrad, 2019, 32(1):5-8. DOI:10.16571/j.cnki.1008-8199.2019.01.002 . | |
| 4 | TAVEIRA DA SILVA A M, KAULBACH H C, CHUIDIAN F S, et al. Brief report: shock and multiple-organ dysfunction after self-administration of Salmonella endotoxin[J]. N Engl J Med, 1993, 328(20):1457-1460. DOI:10.1056/nejm199305203282005 . |
| 5 | KORNEEV K V. Mouse models of Sepsis and septic shock[J]. Mol Biol, 2019, 53(5):704-717. DOI:10.1134/S0026893319050108 . |
| 6 | KINGSLEY S M K, BHAT B V. Differential paradigms in animal models of Sepsis [J]. Curr Infect Dis Rep, 2016, 18(9):26. DOI:10.1007/s11908-016-0535-8 . |
| 7 | CARPENTER K C, HAKENJOS J M, FRY C D, et al. The influence of pain and analgesia in rodent models of Sepsis [J]. Comp Med, 2019, 69(6):546-554. DOI:10.30802/aalas-cm-19-000004 . |
| 8 | MISHRA S K, CHOUDHURY S. Experimental protocol for cecal ligation and puncture model of polymicrobial Sepsis and assessment of vascular functions in mice[J]. Methods Mol Biol, 2018, 1717:161-187. DOI:10.1007/978-1-4939-7526-6_14 . |
| 9 | BURAS J A, HOLZMANN B, SITKOVSKY M. Animal Models of sepsis: setting the stage[J]. Nat Rev Drug Discov, 2005, 4(10):854-865. DOI:10.1038/nrd1854 . |
| 10 | MURANDO F, PELOSO A, COBIANCHI L. Experimental abdominal Sepsis: sticking to an awkward but still useful translational model[J]. Mediat Inflamm, 2019, 2019:8971036. DOI:10.1155/2019/8971036 . |
| 11 | NICOLAI O, PÖTSCHKE C, SCHMOECKEL K, et al. Antibody production in murine polymicrobial Sepsis—kinetics and key players[J]. Front Immunol, 2020, 11:828. DOI:10.3389/fimmu.2020.00828 . |
| 12 | ZANTL N, UEBE A, NEUMANN B, et al. Essential role of gamma interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis[J]. Infect Immun, 1998, 66(5):2300-2309. DOI:10.1128/IAI.66.5. 2300-2309.1998 . |
| 13 | RINCON J C, EFRON P A, MOLDAWER L L, et al. Cecal slurry injection in neonatal and adult mice[J]. Methods Mol Biol, 2021, 2321:27-41. DOI:10.1007/978-1-0716-1488-4_4 . |
| 14 | LEWIS A J, SEYMOUR C W, ROSENGART M R. Current murine models of Sepsis [J]. Surg Infect, 2016, 17(4):385-393. DOI:10.1089/sur.2016.021 . |
| 15 | NAKAJIMA R, HAGIHARA H, MIYAKAWA T. Similarities of developmental gene expression changes in the brain between human and experimental animals: rhesus monkey, mouse, Zebrafish, and Drosophila [J]. Mol Brain, 2021, 14(1):135. DOI:10.1186/s13041-021-00840-4 . |
| 16 | BURAS J A, HOLZMANN B, SITKOVSKY M. Animal Models of sepsis: setting the stage[J]. Nat Rev Drug Discov, 2005, 4(10):854-865. DOI:10.1038/nrd1854 . |
| 17 | ZINGARELLI B, COOPERSMITH C M, DRECHSLER S, et al. Part I: Minimum quality threshold in preclinical sepsis studies (MQTiPSS) for study design and humane modeling endpoints[J]. Shock, 2019, 51(1):10-22. DOI:10.1097/SHK. 0000000000001243 . |
| 18 | RAYMOND S L, LÓPEZ M C, BAKER H V, et al. Unique transcriptomic response to sepsis is observed among patients of different age groups[J]. PLoS One, 2017, 12(9): e0184159. DOI:10.1371/journal.pone.0184159 .[PubMed] |
| 19 | STORTZ J A, HOLLEN M K, NACIONALES D C, et al. Old mice demonstrate organ dysfunction as well as prolonged inflammation, immunosuppression, and weight loss in a modified surgical Sepsis model[J]. Crit Care Med, 2019, 47(11): e919-e929. DOI:10.1097/CCM.0000000000003926 .[PubMed] |
| 20 | TURNBULL I R, WLZOREK J J, OSBORNE D, et al. Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture[J]. Shock Augusta Ga, 2003, 19(4):310-313. DOI:10.1097/00024382-200304000-00003 . |
| 21 | Xu J, Tong L, YAO J, et al. Association of sex with clinical outcome in critically Ill sepsis patients: A retrospective analysis of the large clinical database MIMIC-III[J]. Shock, 2019 52(2):146-151. DOI:10.1097/SHK.0000000000001253 . |
| 22 | MEGE J L, BRETELLE F, LEONE M. Sex and bacterial infectious diseases[J]. New Microbes New Infect, 2018, 26: S100-S103. DOI:10.1016/j.nmni.2018.05.010 . |
| 23 | GAY L, MELENOTTE C, LAKBAR I, et al. Sexual dimorphism and gender in infectious diseases[J]. Front Immunol, 2021, 12:698121. DOI:10.3389/fimmu.2021.698121 . |
| 24 | LEFÈVRE N, CORAZZA F, VALSAMIS J, et al. The number of X chromosomes influences inflammatory cytokine production following toll-like receptor stimulation[J]. Front Immunol, 2019, 10:1052. DOI:10.3389/fimmu.2019.01052 . |
| 25 | Knöferl M W, Angele M K, DIODATO M D, et al. Female sex hormones regulate macrophage function after trauma-hemorrhage and prevent increased death rate from subsequent sepsis[J]. Ann Surg, 2002, 235(1):105-112. DOI:10.1097/00000658-200201000-00014 . |
| 26 | HELLMAN J, BAHRAMI S, BOROS M, et al. Part Ⅲ: Minimum quality threshold in preclinical sepsis studies (MQTiPSS) for fluid resuscitation and antimicrobial therapy endpoints[J]. Shock, 2019, 51(1):33-43. DOI:10.1097/SHK.0000000000001209 . |
| 27 | BYRNE L, HAREN F VAN. Fluid resuscitation in human sepsis: time to rewrite history? [J]. Ann Intensive Care, 2017, 7(1):4. DOI:10.1186/s13613-016-0231-8 . |
| 28 | EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11):1181-1247. DOI:10.1007/s00134-021-06506-y . |
| 29 | ESMON C T. Why do animal models (sometimes) fail to mimic human sepsis?[J]. Crit Care Med, 2004, 32(5 ): S219-S222. DOI:10.1097/01.ccm.0000127036.27343.48 . |
| 30 | CARPENTER K C, HAKENJOS J M, FRY C D, et al. The influence of pain and analgesia in rodent models of Sepsis [J]. Comp Med, 2019, 69(6):546-554. DOI:10.30802/aalas-cm-19-000004 . |
| 31 | LEE H T, EMALA C W, JOO J D, et al. Isoflurane improves survival and protects against renal and hepatic injury in murine septic peritonitis[J]. Shock, 2007, 27(4):373-379. DOI:10.1097/01.shk.0000248595.17130.24 . |
| 32 | HERRMANN I K, CASTELLON M, SCHWARTZ D E, et al. Volatile anesthetics improve survival after cecal ligation and puncture[J]. Anesthesiology, 2013, 119(4):901-906. DOI:10.1097/aln.0b013e3182a2a38c . |
| 33 | BAXTER M G, MURPHY K L, TAYLOR P M, et al. Chloral hydrate is not acceptable for anesthesia or euthanasia of small animals[J]. Anesthesiology, 2009, 111(1):209; author reply 209-209; author reply 210. DOI:10.1097/ALN.0b013e3181a8617e . |
| 34 | SINGLETON K D, WISCHMEYER P E. Distance of cecum ligated influences mortality, tumor necrosis factor-alpha and interleukin-6 expression following cecal ligation and puncture in the rat[J]. Eur Surg Res, 2003, 35(6):486-491. DOI:10.1159/000073387 . |
| 35 | SONG T Z, YIN H L, CHEN J T, et al. Survival advantage depends on cecal volume rather than cecal length in a mouse model of cecal ligation and puncture[J]. J Surg Res, 2016, 203(2):476-482. DOI:10.1016/j.jss.2016.03.019 . |
| 36 | DEJAGER L, PINHEIRO I, DEJONCKHEERE E, et al. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? [J]. Trends Microbiol, 2011, 19(4):198-208. DOI:10.1016/j.tim.2011.01.001 . |
| 37 | CAVAILLON J M, SINGER M, SKIRECKI T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads[J]. EMBO Mol Med, 2020, 12(4): e10128. DOI:10.15252/emmm.201810128 . |
| 38 | ALVERDY J C, KESKEY R, THEWISSEN R. Can the cecal ligation and puncture model Be repurposed to better inform therapy in human Sepsis? [J]. Infect Immun, 2020, 88(9): e00942-e00919. DOI:10.1128/iai.00942-19 . |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [3] | KONG Zhihao, WEI Xiaofeng, YU Lingzhi, FENG Liping, ZHU Qi, SHI Guojun, WANG Chen. Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 368-375. |
| [4] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [5] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [6] | XU Qiuyu, YAN Guofeng, FU Li, FAN Wenhua, ZHOU Jing, ZHU Lian, QIU Shuwen, ZHANG Jie, WU Ling. A Mouse Model of Polycystic Ovary Syndrome Established Through Subcutaneous Administration of Letrozole Sustained-Release Pellets and Hepatic Transcriptome Analysis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 119-129. |
| [7] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
| [8] | ZHANG Nan, LI Huaiyin, LIAN Xiaodi, WEI Juanpeng, GAO Ming. Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 73-78. |
| [9] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
| [10] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| [11] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
| [12] | TAN He, YANG Xiaohui, ZHANG Daxiu, WANG Guicheng. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. |
| [13] | MENG Yu, LIANG Dongli, ZHENG Linlin, ZHOU Yuanyuan, WANG Zhaoxia. Optimization and Evaluation of Conditions for Orthotopic Nude Mouse Models of Human Liver Tumor Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 511-522. |
| [14] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
| [15] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||