Loading...

Table of Content

    25 August 2025, Volume 45 Issue 4
    Animal Models of Human Diseases
    Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs
    WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang
    2025, 45(4):  379-392.  DOI: 10.12300/j.issn.1674-5817.2025.024
    Asbtract ( 275 )   HTML ( 17)   PDF (3294KB) ( 544 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To develop GTKO (α-1,3-galactosyltransferase gene-knockout, GTKO)/hCD55 (human CD55) gene-edited xenotransplant donor pigs and verify their function. Methods In this study, CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated nuclease 9), PiggyBac transposon technology and somatic cell nuclear transfer technology were used to construct GTKO/hCD55 gene-edited Diannan miniature pigs. The phenotype and function of GTKO/hCD55 pigs were analyzed by Sanger sequencing, real-time fluorescence quantitative PCR, flow cytometry, immunofluorescence, bisulfite sequencing, antigen-antibody binding assays, and complement-dependent cytotoxicity assays. Results After transfection of PX458 and PiggyBac gene editing vectors into wild-type fetal pig fibroblasts, 48 single-cell colonies were obtained through puromycin drug screening. Two single-cell colonies were selected for somatic cell nuclear transfer, resulting in two fetal pigs at 33 days of gestation. The GGTA1(α-1,3-galactosyltransferase) genotypes of fetal pig F01 were -17 bp and wild type (WT), while the GGTA1 genotypes of fetal pig F02 were -26 bp/+2 bp and -3 bp. The hCD55 mRNA expression levels of both fetal pigs were significantly higher than those of WT pigs (P<0.01). The fetal pig F02 was selected as the donor cell source for recloning, 11 surviving piglets were obtained, all identified as GTKO/hCD55 gene-edited pigs. These pigs showed absence of α-Gal antigen expression, but weak or no expression of hCD55 was observed. Methylation analysis of the hCD55 gene's CpG island showed hypermethylation in kidney tissue lacking hCD55 expression, whereas it was not methylated or partially methylated in kidney tissue expressing hCD55. Moreover, codon optimization of the CpG island of the hCD55 gene to reduce CG content could achieve stable expression of the hCD55 gene. In addition, antigen-antibody binding experiment showed that the amount of human IgM binding to GTKO/hCD55 gene-edited pig fibroblasts was significantly lower than that of WT pigs (P<0.01). Complement-dependent cytotoxicity experiment showed that the survival rate of fibroblasts in GTKO/hCD55 pigs was significantly higher than that in WT pigs (P<0.01). Conclusion This study demonstrates the successful generation of GTKO/hCD55 gene-edited xenotransplant donor pigs. Methylation-induced gene silencing of the hCD55 gene can be effectively avoided by reducing the CG content of the CpG island through codon optimization. This study provides a reference for the development of xenotransplant donor pigs and guides subsequent research on xenotransplantation.

    Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion
    JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan
    2025, 45(4):  393-402.  DOI: 10.12300/j.issn.1674-5817.2024.183
    Asbtract ( 87 )   HTML ( 2)   PDF (2290KB) ( 458 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To construct intrauterine adhesion (IUA) mouse models induced by two different concentrations of ethanol injury, compare the phenotypes, and optimize a more stable IUA modeling method. Methods Twenty 8-week-old female C57BL/6N mice were randomly divided into two groups: the 95% ethanol injury group and the 50% ethanol injury group. Using a self-control method, the left uterine horn was infused with ethanol to establish the IUA model, while the right uterine horn was infused with saline as the sham operation. Five mice from each group were euthanized on day 7 and 15 after modeling, and uterine tissues were collected. Hematoxylin-eosin (HE) staining was used to observe the endometrial pathology, and Masson staining was used to assess the degree of endometrial fibrosis. Quantitative real-time PCR was employed to detect the expression levels of fibrosis markers and pro-inflammatory factors in the uterine tissues. Results Compared to the sham operation, these two ethanol injury led to a significant reduction in elasticity of the uterus, an increase in inflammatory infiltration, and a marked increase in the degree of fibrosis on day 7 after modeling (P<0.05). The 95% ethanol injury group showed a significant decrease in endometrial thickness (P<0.05), whereas no significant change was observed in the 50% ethanol injury group when compared to the sham operation (P>0.05). The expression levels of fibrotic marker molecules collagen type Ⅳ alpha 1 chain (Col4A1), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and pro-inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly elevated in the 50% ethanol injury group when compared to the sham operation (P<0.05), although there was an increasing trend of the same markers in the 95% ethanol injury group, the differences were not statistically significant (P>0.05). On day 15 after modeling, the histopathological changes in both ethanol injury groups were not significant when compared to the sham operation, the expression levels of Col4A1, TGF-β, TNF-α and IL-1β remained significantly higher in the 50% ethanol injury group (P<0.05), while only IL-1β was significantly elevated in the 95% ethanol injury group (P<0.05). Conclusion Uterine infusion with 95% ethanol results in more marked histopathological changes in the IUA mouse model compared to the 50% ethanol injury group. The 95% ethanol injury model is suitable for histopathological studies. However, the 50% ethanol injury group shows higher expression levels of fibrosis markers and pro-inflammatory factors compared to the 95% ethanol injury group, suggesting that the 50% ethanol injury model is more suitable for molecular pathological study.

    A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide
    GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin
    2025, 45(4):  403-410.  DOI: 10.12300/j.issn.1674-5817.2024.194
    Asbtract ( 140 )   HTML ( 3)   PDF (1198KB) ( 252 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To observe and compare the effects of different concentrations of cyclophosphamide (CTX) in inducing premature ovarian insufficiency (POI) model in mice and investigate the mechanism of injury. Methods Thirty-two 6~8-week-old female C57BL/6J mice were randomly divided into four groups (n=8 per group) using a weight-based block randomization method. The POI model was established via a single intraperitoneal injection of 75 mg/kg cyclophosphamide (CTX), 120 mg/kg CTX, 120 mg/kg CTX + 12 mg/kg Busulfan, or an equivalent volume of normal saline (control). Ovarian coefficients, serum estradiol (E2) and follicle-stimulating hormone (FSH) levels were measured. Western blotting was performed to assess changes in ovarian expression levels of NAD-dependent deacetylase sirtuin-5 (SIRT5) and forkhead box O3a (FOXO3a) under different modeling conditions. After determining the optimal CTX concentration for modeling, an additional forty 6~8-week-old femal C57BL/6J mice were randomly divided into five groups (n=8 per group) using a weight-based block randomization method: saline control, 120 mg/kg CTX sampling at 1, 2, 7, or 14 days after modeling. Western blotting was used to evaluate temporal changes of ovarian SIRT5 and FOXO3a protein expression. Results Compared with the saline control, all concentrations of CTX (75 mg/kg CTX, 120 mg/kg CTX) and 120 mg/kg CTX + 12 mg/kg Busulfan induced POI injury in mice. The 120 mg/kg CTX group exhibited smaller changes in ovarian coefficients (P<0.001) and E2 levels (P<0.05), whereas the 120 mg/kg CTX + 12 mg/kg Busulfan group showed rough and reduced luster fur, sluggish response and was in the worst state. Compared with the saline control group, FOXO3a expression was significantly down-regulated (P<0.05), while SIRT5 remained unchanged in the 75 mg/kg CTX group (P>0.05). In contrast, both SIRT5 (P<0.05) and FOXO3a (P<0.05) were significantly down-regulated in the 120 mg/kg CTX group. Further analysis revealed that on day 2 and 7 after 120 mg/kg CTX modeling, the expressions of SIRT5 (P<0.01) and FOXO3a (P<0.001) were significantly down-regulated, with the largest decrease observed on day 7 (SIRT5, P<0.000 1; FOXO3a, P<0.000 1). Conclusion Ovarian injury in the POI model induced by 120 mg/kg CTX is milder than that in the POI model induced by 75 mg/kg CTX. Moreover, the expression changes of SIRT5 and FOXO3a are most significant on day 7 after modeling induced by 120 mg/kg CTX, which may be related to the inhibition of the SIRT5-FOXO3a signaling pathway.

    Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome
    LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao
    2025, 45(4):  411-421.  DOI: 10.12300/j.issn.1674-5817.2024.176
    Asbtract ( 180 )   HTML ( 4)   PDF (921KB) ( 390 )  
    Figures and Tables | References | Related Articles | Metrics

    Animal models combining disease and syndrome are important research tools to explore the nature of traditional Chinese medicine (TCM) syndromes. At present, the construction and evaluation methods of animal models have preliminarily established the foundation for standardized development. Qi-yin deficiency syndrome is a common type of TCM syndrome in cardiovascular diseases. It is an important pathogenic factor causing the onset, pathological damage, and chronic nature of cardiovascular diseases, as well as triggering other illnesses. The establishment of an animal model of cardiovascular disease with the characteristics of Qi-yin deficiency, along with an objective and standardized evaluation system, has become an important part of modern cardiovascular disease research. In recent years, research on the construction and evaluation of animal models of heart Qi-yin deficiency syndrome has increased, but the construction methods and evaluation criteria vary. Compared with other animal models, the literature is limited, lacking statistics and overall analysis. Therefore, based on the scientific connotation of heart Qi-yin deficiency syndrome, this article systematically reviews the evaluation system of its animal model, covering multidimensional methods such as macroscopic characterization assessment, physicochemical indicators and objective evaluation, and syndrome differentiation based on prescriptions. The specific model construction strategies are described, including single-factor induction methods (sleep deprivation, chronic intermittent hypoxia, arterial occlusion, high-salt feeding) and the compound-factor induction methods (sleep deprivation combined with drug method, chronic intermittent hypoxia combined with drug method, exhaustive swimming combined with drug method). Meanwhile, application examples of each model in the research are listed, the existing problems in the current model construction and evaluation are analyzed, and optimization directions are proposed, such as promoting the compound factor induction strategy and improving the objectivity of the evaluation criteria. This article aims to provide theoretical references for constructing an animal model of heart Qi-yin deficiency syndrome that conforms to TCM characteristics, and thereby laying a scientific foundation for the prevention and treatment of cardiovascular diseases with TCM.

    Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development
    ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen
    2025, 45(4):  422-431.  DOI: 10.12300/j.issn.1674-5817.2024.170
    Asbtract ( 176 )   HTML ( 9)   PDF (831KB) ( 1001 )  
    Figures and Tables | References | Related Articles | Metrics

    Inflammatory bowel disease (IBD) is a chronic, relapsing intestinal disorder driven by multiple factors including genetics, immunity, and environment, and is clinically classified into ulcerative colitis and Crohn's disease. Currently, mice and zebrafish are the primary experimental animals used in IBD research, among which zebrafish have emerged as an ideal model due to their unique advantages. Compared with rodent models, zebrafish serve as an effective and convenient model, offering advantages such as a short life cycle, robust reproductive capacity, small size, and transparent embryos. These characteristics make zebrafish highly suitable for dynamic tracking of continuous pathological progression and high-throughput drug screening. Zebrafish share over 70% genetic homology with humans, and their intestinal cellular composition and ontogeny closely resemble those of humans. Moreover, the structure and characteristics of their gut microbiota are similar to the human intestinal microbiome, providing a solid foundation for studying the relationship between gut microbiota and IBD. With advances in biotechnology, zebrafish IBD models generated by chemical induction or genetic engineering can accurately simulate the core pathological features of human IBD, such as intestinal wall thickening, inflammatory cell infiltration, and elevated expression of pro-inflammatory factors. These models have played a significant role in revealing the pathogenesis of IBD as well as the development of targeted therapeutic drugs. This article first outlines the intestinal characteristics of zebrafish and features of zebrafish IBD models, then provides an in-depth analysis of their application in IBD pathogenesis research from multiple aspects, including genetics, immunity, environment and diet, and infection. It also reviews research progress on the application of zebrafish in the development of anti-inflammatory drugs, probiotics, and traditional Chinese medicine therapies, aiming to provide researchers with references for the rational use of zebrafish models at all stages of preclinical research, to advance fundamental IBD research and accelerate breakthroughs in this field.

    Animal Experimental Techniques and Methods
    Exploration of Rat Fetal Lung Tissue Fixation Methods
    LIU Liyu, JI Bo, LIU Xiaoxuan, FANG Yang, ZHANG Ling, GUO Tingting, QUAN Ye, LI Hewen, LIU Yitian
    2025, 45(4):  432-438.  DOI: 10.12300/j.issn.1674-5817.2025.053
    Asbtract ( 67 )   HTML ( 5)   PDF (1914KB) ( 219 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective This study explores the methods of lung tissue extraction and fixation required for pathological studies of fetal rats, based on the unique physiological structure of fetal rat lung tissue and existing lung tissue fixation techniques for adult rats. Methods Six pregnant adult SD rats at 20.5 days of gestation were subjected to cesarean section to obtain fetal rats. Four healthy fetal rats with similar body weight, vital signs, and respiratory status were selected from each pregnant rat, and they were randomly divided into the following groups using a random number table: direct lung infiltration group, lung infiltration group after intratracheal infusion, whole-body infiltration group of fetal rats, and whole-body infiltration group after intratracheal infusion of fetal rats. To systematically compare and analyze the anatomical morphology under different fixation methods, lung tissues from four groups of fetal rats were harvested, perfused, and fixed, and the gross morphology of lung tissues in each group was observed. Paraffin sections were prepared and stained with Hematoxylin-Eosin (H&E). The histological morphology of the whole lung, alveoli, and bronchi was further examined under optical microscopy. Results In the direct lung infiltration group, the hilar structures were unclear, lung lobation was indistinct, the shape was irregular, lung cavities were small, and alveoli and bronchi were shrunken. In the lung infiltration group after intratracheal infusion, the hilar structures were clear, lobation was pronounced, the shape was regular, lung cavities were large, and alveoli and bronchi were full. Both the whole-body infiltration group and whole-body infiltration group after intratracheal infusion of fetal rats exhibited visible lungs, hearts, skins, and other organs. The lung tissues of both groups showed obvious lobulation, irregular shape, and damage at the margins of lung lobes. In the whole-body infiltration group, the thoracic cavities of the fetus were flattened, lung cavities were small, and alveoli and bronchi were shrunken. In the whole-body infiltration group after intratracheal infusion of fetal rats, the fetal thoracic cavities were full, lung cavities were large, and alveoli and bronchi were relatively full. Conclusion The lung infiltration after intratracheal infusion method for fetal rat lung tissue fixation outperforms direct lung infiltration, whole-body infiltration of fetal rats, and whole-body infiltration after intratracheal infusion of fetal rats in terms of preservation of the lung tissue's original morphology, paraffin sectioning, staining, and pathological observation and analysis. The embedding, sectioning, and staining processes are also simple and save consumables. Therefore, intratracheal infusion followed by lung infiltration method is recommended for fixation in histopathological observation of fetal rat lung tissue.

    Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation
    QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo
    2025, 45(4):  439-448.  DOI: 10.12300/j.issn.1674-5817.2024.187
    Asbtract ( 227 )   HTML ( 1)   PDF (1104KB) ( 314 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To establish background data for a 90-day feeding trial of SD rats to ensure the reliability of research data. Methods Background data from six independent 90-day feeding trials of SD rats conducted by the National Center for Safety Evaluation of Drugs from 2020 to 2023 were summarized. These studies involved a blank control group of 120 SPF-grade 4-week-old SD rats, with an equal number of males and females, which were only given standard full-nutrient pelleted rat feed. After the quarantine period, the animals were observed for an additional 90 days, followed by intraperitoneal injection of Zoletil (50 mg/mL) for anesthesia, blood sampling, euthanasia, and necropsy. By analyzing the data from the blank control group, a relevant background database for SD rats was established. Results Both male and female rats exhibited steady weight gain, with a more pronounced increase in male rats. Within 90 days, the average body weight of male and female rats increased to over 500 g and 300 g, respectively. Three weeks later, the average daily food intake of male rats stabilized at approximately 25~28 g per rat, while that of female rats remained stable at approximately 16~19 g per rat. The food utilization rate of all animals gradually decreased from the first week of the experiment. In the white blood cell (WBC) differential count results, significant differences were observed in the counts of WBCs, neutrophils (Neut), lymphocytes (Lymph), and monocytes (Mono) between males and females (P<0.001). However, there were no significant differences in the percentages of neutrophil (%Neut), lymphocyte (%Lymph), and monocyte (%Mono) between the sexes (P>0.05). The average red blood cell count (RBC), hemoglobin concentration (HGB), hematocrit (HCT), platelet count (PLT), prothrombin time (PT), and activated partial thromboplastin time (APTT) were higher in male animals than in female animals (P<0.05). The average values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CK), lactate dehydrogenase (LDH), glucose (GLU), and triglyceride (TG) in male rats were higher than those in female rats (P<0.05). The urinary pH range for male animals was 5.0 to 8.5, while for female animals it was 6.5 to 9.0. The majority of male animals had a urinary specific gravity lower than 1.020, and the majority of female animals had a urinary specific gravity lower than 1.015. The weights of various organs (excluding the adrenal glands and reproductive organs) in male animals were heavier than those in female animals (P<0.001), while the organ/body weight ratios (excluding the kidneys and reproductive organs) of female animals were higher than those of male animals (P<0.001). Conclusion This study summarizes the background reference ranges for body weight, food intake, hematology, and serum biochemistry indicators in SPF-grade SD rats in the untreated control group from six 90-day feeding trials conducted by the National Center for Safety Evaluation of Drugs. It provides important reference data for related research. By summarizing the background and spontaneous histopathological changes in rats, this study aids in the standardization and normalization of subsequent research, as well as in the evaluation and analysis of abnormal results.

    Key Challenges and Mitigation Strategies for Animal Pregnancy in Non-clinical Reproductive Toxicity Testing of Drugs
    LIU Kun, LAN Qing, YI Bing, XIE Xiaojie
    2025, 45(4):  449-456.  DOI: 10.12300/j.issn.1674-5817.2024.177
    Asbtract ( 113 )   HTML ( 3)   PDF (994KB) ( 587 )  
    Figures and Tables | References | Related Articles | Metrics

    Non-clinical reproductive toxicity studies typically employ mammals like rats, rabbits, and cynomolgus monkeys, with animal pregnancy being a key challenge in such testing. This article focuses on the difficulties encountered in the animal pregnancy process and potential countermeasures. Rats can be used for fertility and early embryonic development toxicity studies (Segment Ⅰ), embryo-fetal development toxicity studies (Segment Ⅱ), and perinatal toxicity studies (Segment Ⅲ). The estrous cycle of female rats can be determined by vaginal smear, and mating behavior is confirmed through copulatory plug checks the following day after pairing one female with one male in the same cage. Rabbits are commonly used in embryo-fetal development toxicity studies (Segment Ⅱ). Mating behavior between male rabbits and estrous females is observed to determine the time of conception. However, challenges such as atypical estrus of female rabbits, large variations in estrus between batches, and mating failure often occur in reproductive toxicity testing, which may be addressed through prolonged light exposure, increased protein supplementation, optimized mating strategies, and environmental modifications like female and male rabbits are raised adjacent to each other. Non-human primates (NHPs) are typically employed in perinatal toxicity studies (Segment Ⅲ), where one of the key challenges lies in accurately determining sexual maturity in males - a critical factor for reproductive toxicity testing, which can be assessed through comprehensive evaluation of age, body weight, and testicular volume. Generally, male macaques are considered sexually mature when they meet the following criteria: age >4.5 years, body weight >4.5 kg, single testis volume >10 mL, and combined testicular volume >20 mL. For pregnancy confirmation, ultrasound examination demonstrating visible gestational sacs is required, though this necessitates experienced veterinary clinicians to establish standardized ultrasound examination protocols. In conclusion, reproductive toxicity studies should employ species-appropriate detection methods and evaluation criteria based on anatomical characteristics of the reproductive system to ensure successful mating and proper study execution.

    Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy
    LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing
    2025, 45(4):  457-465.  DOI: 10.12300/j.issn.1674-5817.2025.035
    Asbtract ( 110 )   HTML ( 2)   PDF (2246KB) ( 254 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To explore the application value of probe-based confocal laser endomicroscopy (pCLE) in rapidly detecting and evaluating the morphological characteristics of digestive tract tissues in mice. Methods Twelve male SPF Kunming mice aged 6 weeks were randomly divided into two groups. Six mice were subjected to gastric gavage with 52% Red Star Erguotou to establish the model, and six were given saline by gastric gavage as a control. After 28 days of modeling, 3 mice were randomly selected from each group. After deep anesthesia induced by inhalation of 3% isoflurane, the mice were sacrificed by cervical dislocation. The stomach, duodenum, jejunum, and rectum tissues were excised and immersed in 1% fluorescein sodium solution for staining. The microstructure of the mucosal surface of each tissue was observed using pCLE. The remaining mice in the model group and the control group were deeply anesthetized by inhaling 3% isoflurane, then cardiac perfusion was performed successively with saline and 4% paraformaldehyde. The stomach, duodenum, jejunum, and rectum tissues were excised for dehydration, section and hematoxylin-eosin (HE) staining, and the morphological changes of the tissues were observed under a microscope. Results Under pCLE imaging, fluorescence staining on the surface of the gastrointestinal mucosa was uniform in the control group; the morphology of gastric pits, intestinal villi, and intestinal crypts was intact, arranged compactly, and had distinct boundaries. In the model group, the gastrointestinal mucosa exhibited mucosal swelling and deformation, with uneven fluorescence staining and fluorescein leakage. Furthermore, some tissues showed defects or cell shedding, and the boundaries between adjacent characteristic structures (e.g., gastric pits, intestinal crypts) were blurred. HE staining showed that the gastrointestinal tissue structure of the control group mice was normal and well-organized, with no structural defects. Moreover, submucosal glands were uniform in size, with no hyperplasia observed, and no obvious inflammatory cell infiltration. In the model group, some gastrointestinal mucosal structures were defective and sparsely arranged; submucosal glands showed atrophy, accompanied by obvious inflammatory cell infiltration. The histological characteristics detected by pCLE were consistent with those of HE staining. Conclusion pCLE can be used to obtain rapid, real-time, large-scale, and high-resolution microscopic imaging of the gastrointestinal mucosa, realistically and comprehensively displaying its physiological and microstructural characteristics. It shows promising prospects and practical utility in the histological evaluation of digestive system injuries in small animals.

    Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty
    LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi
    2025, 45(4):  466-472.  DOI: 10.12300/j.issn.1674-5817.2025.006
    Asbtract ( 105 )   HTML ( 1)   PDF (1400KB) ( 376 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective The full name of vertebroplasty is percutaneous vertebroplasty (PVP). It is a clinical technique that injects bone cement into the diseased vertebral body to achieve strengthening of the vertebra. The research on the safety and efficacy of bone cement is the basis for clinical application. In this study, vertebroplasty is used to evaluate and compare the safety and efficacy of Tecres and radiopaque bone cement in experimental pigs, and to determine the puncture method suitable for pigs and the pre-clinical evaluation method for the safety and efficacy of bone cement. Methods Twenty-four experimental pigs (with a body weight of 60-80 kg) were randomly divided into an experimental group (Group A) and a control group (Group B). Group A was the Tecres bone cement group, and Group B was the radiopaque bone cement group, with 12 pigs in each group. Under the monitoring of a C-arm X-ray machine, the materials were implanted into the 1st lumbar vertebra (L1) and 4th lumbar vertebra (L4) of the pigs via percutaneous puncture using the unilateral pedicle approach. The animals were euthanized at 4 weeks and 26 weeks after the operation, respectively. The L4 vertebrae were taken for compressive strength testing, and the L1 vertebrae were taken for hard tissue pathological examination to observe the inflammatory response, bone necrosis, and degree of osseointegration at the implantation site. Results The test results of compressive strength between groups A and B showed no significant difference at 4 weeks and 26 weeks after bone cement implantation (P > 0.05). Observation under an optical microscope (×100) revealed that at 4 weeks postoperatively, both groups A and B showed that the bone cement was surrounded by proliferative fibrous tissue, with lymphocyte infiltration around it. The bone cement was combined with bone tissue, the trabecular arrangement was disordered, and osteoblasts and a small amount of osteoid were formed. At 26 weeks postoperatively, bone cement was visible in both groups A and B. The new bone tissue was mineralized, the trabeculae were fused, the trabecular structure was regular and dense with good continuity, and no obvious inflammatory reaction was observed. Conclusion In experimental pig vertebrae, there were no significant differences observed in the compressive strength, inflammation response, bone destruction, and integration with the bone between Tecres and non-radiopaque bone cement. Both exhibited good biocompatibility and osteogenic properties. It indicates that using vertebroplasty to evaluate the safety and efficacy of bone cement in pigs is scientifically sound.

    Facilities and Management for Laboratory Animals
    Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers
    WANG Tingjun, LUO Hao, CHEN Qi
    2025, 45(4):  473-482.  DOI: 10.12300/j.issn.1674-5817.2024.181
    Asbtract ( 229 )   HTML ( 5)   PDF (1285KB) ( 661 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective In traditional laboratory animal centers, there are issues such as low efficiency in cage scheduling, insufficient supervision of personnel behavior, and difficulty in upgrading aging equipment. This study aims to upgrade the information system of existing laboratory animal centers by applying multimodal large language model technology. This upgrade intends to achieve real-time perception of the status of animal cages, intelligent supervision of experimental personnel behavior, and automated processing of business workflows, thereby improving management efficiency and precision. Methods An AI-based approach for upgrading laboratory animal center informatization was proposed by the First Affiliated Hospital of Zhejiang University School of Medicine,compatible with different breeding equipments. The system architecture, from the bottom up, consisted of three layers: hardware layer, core algorithm layer, and application layer. The hardware layer was equipped with cameras and high-speed network transmission devices for collecting information on cages and personnel. The core algorithm layer utilized multi-stage image preprocessing technology and multimodal large language model recognition technology to extract and identify image information. The application layer integrated the recognition results with the existing information of the animal center to generate real-time cage occupancy heatmaps, which visually and clearly showed the density distribution of cage usage in the laboratory animal center. Results The AI-based management system achieved a cage recognition accuracy of 98.5% and a correct wearing identification rate of laboratory coats of 98.8%. The average image processing time was 3.7 seconds per image, the effective utilization rate of cages increased by 23%, and the turnover efficiency improved by 35%. In addition, the management system could track and warn against non-compliant behaviors in real time. After intelligent recognition, the system detected more violations, with the violation detection rate increasing by 90.6%. After continuous use for three months, the weekly average number of violations decreased by 54.0% compared to the baseline period. Conclusion This study applies multimodal large language model to the field of laboratory animal management, achieving real-time monitoring and automated management of cage identification, thereby improving management efficiency and precision. The system integrates multi-source data such as visual recognition and behavior analysis, establishing a comprehensive intelligent supervision system for experimental personnel. It provides research institutions with efficient, accurate, and cost-effective management tools, promoting the intelligent development of laboratory animal management.

    Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province
    LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida
    2025, 45(4):  483-489.  DOI: 10.12300/j.issn.1674-5817.2024.142
    Asbtract ( 106 )   HTML ( 7)   PDF (724KB) ( 270 )  
    Figures and Tables | References | Related Articles | Metrics

    Laboratory animals are the "living" tools of medical research. Through animal experiments, people can gain continuous insights into the laws of life, reveal the essence of diseases, develop vaccines and drugs for prevention and treatment, and play an important role in the technological development of fields related to human health. The environmental conditions of laboratory animals have a direct impact on their health, quality, and the results of animal experiments. The higher the degree of environmental control, the more reliable the experimental results are in terms of quality. Therefore, environmental control of laboratory animal facilities is important for ensuring that laboratory animals live under required conditions, which is a key factor for conducting effective animal experiments. This article analyzes the current status of environmental testing of laboratory animal facilities in Sichuan Province, briefly summarizing their number, area, and other basic information, and provides detailed statistics on the ability of institutions to conduct environmental testing for laboratory animal facilities in Sichuan Province. It also summarizes the testing requirements for laboratory animal facility environments based on national standards, regulatory requirements, and the quality control needs of facility users. In the analysis of testing indicators for laboratory animal facilities, based on testing data from 40 laboratory animal facilities in Sichuan Province, it was found that static pressure difference is the indicator most prone to non-compliance, followed by illumination and air exchange rate. Using barrier environments as examples, common problems in the process of environmental testing for laboratory animal facilities are summarized in six aspects: testing personnel, instruments, methods, technical materials, testing environment, and reports, and targeted suggestions are proposed. These suggestions help improve environmental control in laboratory animal facilities, and provide practical reference and guidance for relevant testing institutions, as well as laboratory animal producers and users in the industry.

    Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System
    JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang
    2025, 45(4):  490-495.  DOI: 10.12300/j.issn.1674-5817.2024.130
    Asbtract ( 169 )   HTML ( 4)   PDF (668KB) ( 169 )  
    Figures and Tables | References | Related Articles | Metrics

    Objective To monitor the real-time changes in ammonia concentration in the laboratory animal facility environment before, during, and after the air conditioning system stops supplying air, so as to provide a basis and reference for developing emergency plans for the shutdown of the air conditioning system. Methods The laboratory animal facilities of the Wuhan Institute of Biological Products were used as the research object. Ammonia concentration detectors were used to monitor ammonia concentration continuously in the environment of conventional rabbit production facility, SPF hamster production facility, and SPF guinea pig experimental facility before and after the passive shutdown due to repairs and active maintenance shutdown of the air conditioning system, as well as the time for the ammonia concentration to return to daily levels after resuming air supply. Results Under both shutdown modes of the air conditioning system, the trend of ammonia concentration changes in different laboratory animal facilities was consistent, showing a rapid increase after shutdown and a rapid decrease after resuming air supply. Under active maintenance shutdown, the maximum ammonia concentrations in the conventional rabbit production facilities, SPF hamster production facilities, and SPF guinea pig experimental facilities were 9.81 mg/m3, 14.27 mg/m3, and 6.98 mg/m3, respectively. Within 12 minutes after resuming air supply, ammonia concentration could return to normal daily levels. Under passive long-term shutdown, ammonia concentration value was positively correlated with the duration of air supply suspension. As the shutdown duration increased, ammonia concentration continued to increase. The maximum ammonia concentration values in the three facilities occurred at 88 minutes (38.06 mg/m3), 40 minutes (18.43 mg/m3), and 34 minutes (15.61 mg/m3) after air supply suspension, respectively.Within 11 minutes after resuming air supply, ammonia concentration could return to normal daily levels. Conclusion Shutdown of the air conditioning system causes a rapid increase in ammonia concentration in laboratory animal facilities, and the rise in ammonia concentration is positively correlated with the duration of air supply suspension. Therefore, when an emergency shutdown of the air-conditioning system is required due to maintenance or other reasons, backup fans should be provided in accordance with the requirements of GB 50447-2008 "Architectural and Technical Code for Laboratory Animal Facilities". Older facilities should make adequate preparations and develop a scientifically sound emergency plan.

    Guidelines for Comparative Medical Research and Reporting
    Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments
    ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui
    2025, 45(4):  496-507.  DOI: 10.12300/j.issn.1674-5817.2025.017
    Asbtract ( 189 )   HTML ( 9)   PDF (1130KB) ( 556 )  
    Figures and Tables | References | Related Articles | Metrics

    Animal experiments are an essential component of life sciences and medical research. However, the external validity and reliability of individual animal studies are frequently challenged by inherent limitations such as small sample sizes, high design heterogeneity, and poor reproducibility, which impede the effective translation of research findings into clinical practice. Systematic reviews and meta-analysis represent a key methodology for integrating existing evidence and enhancing the robustness of conclusions. Currently, however, the application of systematic reviews and meta-analysis in the field of animal experiments lacks standardized guidelines for their conduct and reporting, resulting in inconsistent quality and, to some extent, diminishing their evidence value. To address this issue, this paper aims to systematically delineate the reporting process for systematic reviews and meta-analysis of animal experiments and to propose a set of standardized recommendations that are both scientific and practical. The article's scope encompasses the entire process, from the preliminary preparatory phase [including formulating the population, intervention, comparison and outcome (PICO) question, assessing feasibility, and protocol pre-registration] to the key writing points for each section of the main report. In the core methods section, the paper elaborates on how to implement literature searches, establish eligibility criteria, perform data extraction, and assess the risk of bias, based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, in conjunction with relevant guidelines and tools such as Animal Research: Reporting of in Vivo Experiments (ARRIVE) and a risk of bias assessment tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). For the presentation of results, strategies are proposed for clear and transparent display using flow diagrams and tables of characteristics. The discussion section places particular emphasis on how to scientifically interpret pooled effects, thoroughly analyze sources of heterogeneity, evaluate the impact of publication bias, and cautiously discuss the validity and limitations of extrapolating findings from animal studies to clinical settings. Furthermore, this paper recommends adopting the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to comprehensively grade the quality of evidence. Through a modular analysis of the entire reporting process, this paper aims to provide researchers in the field with a clear and practical guide, thereby promoting the standardized development of systematic reviews and meta-analysis of animal experiments and enhancing their application value in scientific decision-making and translational medicine.