Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (5): 475-486.DOI: 10.12300/j.issn.1674-5817.2024.038
• Development and Utilization of Laboratory Animal Resources • Previous Articles Next Articles
TU Yingxin1(), JI Yilan1(
), WANG Fei2(
), YANG Dongming1, WANG Dongdong1, SUN Zhixin1, DAI Yuexin1, WANG Yanji2, KAN Guanghan2, WU Bin2, ZHAO Deming1, YANG Lifeng1(
)(
)
Received:
2024-03-05
Revised:
2024-07-02
Online:
2024-10-25
Published:
2024-11-06
Contact:
YANG Lifeng
CLC Number:
TU Yingxin,JI Yilan,WANG Fei,et al. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage[J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. DOI: 10.12300/j.issn.1674-5817.2024.038.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.038
Figure 2 Changes in selected basic physical indicators of miniature pigs in the experimental and control groups during hindlimb unloading simulated weightlessness experimentNote:Miniature pigs in the experimental group (n=7) were immobilized using customized metal cages and suspended from canvas slings so that their hind limbs were off the ground to unload and their bodies were at a -20° angle to the ground. Control group miniature pigs (n=2) were housed in metal cages without suspension immobilization. A, Changes in body weight during the experiment (*** the body weight change of the experimental group is significantly different from the control group); B, Changes in red blood cell count (RBC) during the experiment; C, Changes in hemoglobin(HGB) during the experiment; D, Changes in hematocrit (HCT) during the experiment; E, Changes in plasma volume change (△PV) during the experiment (** the ΔPV of experimental group is significantly higher than the control group at the 8th day); F, Changes in serum alanine aminotransferase (ALT) during the experiment; G, Changes in serum γ-glutamyl transferase (γ-GT) during the experiment; H, Changes in serum albumin (ALB) during the experiment; I, Changes in serum globulin (GLB) during the experiment; J, Changes in creatinine (Cr) during the experiment. *P<0.05, **P<0.01, ***P<0.001.
Figure 3 Histopathology and thickness changes of arterial blood vessels in miniature pigs after the hindlimb unloading simulated weightlessness experimentNote:Miniature pigs in the experimental group (n=7) were immobilized using customized metal cages and suspended from canvas slings so that their hind limbs were off the ground to unload and their bodies were at a -20° angle to the ground. Control group miniature pigs (n=2) were housed in metal cages without suspension immobilization. A, HE staining of each artery (the scale size is 100 μm); B, Masson staining of each artery (the scale size is 100 μm); C, Statistical analysis of intima-media thickness in each artery.
Figure 4 Changes in skeletal muscle structure and muscle fiber diameter of miniature pigs after the hindlimb unloading simulated weightlessness experimentNote:Miniature pigs in the experimental group (n=7) were immobilized using customized metal cages and suspended from canvas slings so that their hind limbs were off the ground to unload and their bodies were at a -20° angle to the ground. Control group miniature pigs (n=2) were housed in metal cages without suspension immobilization. Figures A, B, and C represent the HE staining images (the scale size is 100 μm or 20 μm by low and high magnification) , the statistical chart of muscle fiber diameters, and the distribution chart of muscle fiber diameters for various skeletal muscle tissues (gastrocnemius muscle, soleus muscle, paravertebral muscle, and forelimb muscle),respectively. *P<0.05.
Figure 5 Changes in expression levels of muscle atrophy proteins MuRf-1 and Atrogin-1 in miniature pigs after the hindlimb unloading simulated weightlessness experimentNote:Miniature pigs in the experimental group (n=7) were immobilized using customized metal cages and suspended from canvas slings so that their hind limbs were off the ground to unload and their bodies were at a -20° angle to the ground. Control group miniature pigs (n=2) were housed in metal cages without suspension immobilization. A, Expression levels of MuRf-1 and Atrogin-1 in soleus muscle and gastrocnemius muscle detected using western blotting; B, Expression levels of MuRf-1 and Atrogin-1 in paravertebral muscle and forelimb muscle detected using western blotting. *P<0.05, **P<0.01.
Figure 6 Changes in histopathology and related protein expression in each brain region of miniature pigs after the hindlimb unloading simulated weightlessness experimentNote:Miniature pigs in the experimental group (n=7) were immobilized using customized metal cages and suspended from canvas slings so that their hind limbs were off the ground to unload and their bodies were at a -20° angle to the ground. Control group miniature pigs (n=2) were housed in metal cages without suspension immobilization. A, HE staining of each brain region (the scale size is 20 μm), the arrow indicates the degenerating neuron; B, Glial fibrillary acidic protein (GFAP) immunohistochemistry staining of each brain region (the scale size is 50 μm); C, Quantitative analysis of GFAP expression in each brain region (IOD, integrated optical density).**P<0.01.
1 | ZÉRATH E, GRYNPAS M, HOLY X, et al. Spaceflight affects bone formation in rhesus monkeys: a histological and cell culture study[J]. J Appl Physiol, 2002, 93(3):1047-1056. DOI: 10.1152/japplphysiol.00610.2001 . |
2 | VICO L, CHAPPARD D, ALEXANDRE C, et al. Effects of weightlessness on bone mass and osteoclast number in pregnant rats after a five-day spaceflight (COSMOS 1514)[J]. Bone, 1987, 8(2):95-103. DOI: 10.1016/8756-3282(87)90077-9 . |
3 | MIU B, MARTIN T P, ROY R R, et al. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887[J]. FASEB J, 1990, 4(1):64-72. DOI: 10.1096/fasebj.4.1.2136839 . |
4 | GOLDSTEIN M A, EDWARDS R J, SCHROETER J P. Cardiac morphology after conditions of microgravity during COSMOS 2044[J]. J Appl Physiol, 1992, 73(2 ):94S-100S. DOI: 10.1152/jappl.1992.73.2.S94 . |
5 | TISCHLER M E, HENRIKSEN E J, MUNOZ K A, et al. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats[J]. J Appl Physiol, 1993, 74(5):2161-2165. DOI: 10.1152/jappl. 1993. 74. 5.2161 . |
6 | 刘焕, 茹凝玉, 吕强, 等. 中期及长期模拟失重对大鼠颈总动脉钙化的影响[J]. 解放军医学杂志, 2021, 46(1):1-6. DOI: 10.11855/j.issn.0577-7402.2021.01.01 . |
LIU H, RU N Y, LV Q, et al. Mid-term and long-term simulated microgravity causes calcification of common carotid artery in rats[J]. Med J Chin People's Liberation Army, 2021, 46(1):1-6. DOI: 10.11855/j.issn.0577-7402.2021.01.01 . | |
7 | 陈励, 张斌, 杨璐, 等. 模拟失重对大鼠动脉血压、心率昼夜节律的影响及其机制[J]. 解放军医学杂志, 2016, 41(4):289-294. DOI: 10.11855/j.issn.0577-7402.2016.04.06 . |
CHEN L, ZHANG B, YANG L, et al. Effects of simulated microgravity on circadian rhythm of caudal arterial pressure and heart rate in rats and their underlying mechanism[J]. Med J Chin People's Liberation Army, 2016, 41(4):289-294. DOI: 10.11855/j.issn.0577-7402.2016.04.06 . | |
8 | 高放, 程九华, 薛军辉, 等. 模拟失重致大鼠弹力型大动脉血管区域特异性重塑及其重力性对抗措施[J]. 生理学报, 2012, 64(1):14-26. DOI: 10.13294/j.aps.2012.01.002 . |
GAO F, CHENG J H, XUE J H, et al. In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure[J]. Acta Physiol Sin, 2012, 64(1):14-26. DOI: 10.13294/j.aps.2012.01.002 . | |
9 | 孙喜庆, 王冰, 孙会品, 等. 间断性头高位对模拟失重兔动脉内皮素表达和组织形态的影响[J]. 航天医学与医学工程, 2006, 19(4):265-268. DOI: 10.16289/j.cnki.1002-0837.2006.04.007 . |
SUN X Q, WANG B, SUN H P, et al. Effects of intermittent head-up tilt on the endothelin expression and morphological changes of artery during simulated weightlessness in rabbits[J]. Space Med Med Eng, 2006, 19(4):265-268. DOI: 10.16289/j.cnki.1002-0837.2006.04.007 . | |
10 | 王晓平, 陆明, 马培, 等. 模拟失重对恒河猴腰椎运动单元生物力学的影响[J]. 中国组织工程研究, 2016, 20(26):3843-3848. DOI: 10.3969/j.issn.2095-4344.2016.26.007 . |
WANG X P, LU M, MA P, et al. Effects of simulated weightlessness on biomechanics of motion unit of rhesus monkey lumbar vertebra[J]. Chin J Tissue Eng Res, 2016, 20(26):3843-3848. DOI: 10.3969/j.issn.2095-4344.2016.26.007 . | |
11 | 曹新生, 付崇建, 杨连甲. 3周模拟失重对大鼠后肢骨生长代谢的影响[J]. 中华航空航天医学杂志, 2000, 11(4):221-224. DOI: 10.3760/cma.j.issn.1007-6239.2000.04.007 . |
CAO X S, FU C J, YANG L J. Effects of 3 week simulated weightlessness on the growth and metabolism of hindlimb bones in rats[J]. Chin J Aerosp Med, 2000, 11(4):221-224. DOI: 10.3760/cma.j.issn.1007-6239.2000.04.007 . | |
12 | 付崇建, 郁冰冰, 杨连甲, 等. 尾悬吊大鼠骨和骨髓中骨钙素的变化[J]. 航天医学与医学工程, 2003, 16(4):260-263. DOI: 10.16289/j.cnki.1002-0837.2003.04.007 . |
FU C J, YU B B, YANG L J, et al. Changes of osteocalcin in bone and bone marrow in tail suspended rats[J]. Space Med Med Eng, 2003, 16(4):260-263. DOI: 10.16289/j.cnki.1002-0837.2003.04.007 . | |
13 | 赵赞延, 马宇, 张恒伟, 等. 模拟微重力效应下小鼠骨流失的性别差异[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(2):182-188. DOI: 10.3969/j.issn.1674-2591.2022.02.009 . |
ZHAO Z Y, MA Y, ZHANG H W, et al. Gender differences in bone loss under microgravity effect in mice[J]. Chin J Osteoporos Bone Miner Res, 2022, 15(2):182-188. DOI: 10.3969/j.issn.1674-2591.2022.02.009 . | |
14 | 刘书林, 姚永杰, 刘秋红, 等. 犬头低位后肢去负荷模拟失重模型的建立与验证[J]. 载人航天, 2021, 27(5):596-602. DOI: 10.16329/j.cnki.zrht.2021.05.009 . |
LIU S L, YAO Y J, LIU Q H, et al. Establishment and validation of simulated weightlessness model of dog with head down hindlimb unloading[J]. Manned Spacefl, 2021, 27(5):596-602. DOI: 10.16329/j.cnki.zrht.2021.05.009 . | |
15 | 孙亚志, 黄丽昀, 张谦, 等. 尾吊大鼠骨骼肌线粒体钙、镁含量和体视学的变化[J]. 航天医学与医学工程, 1998, 11(4): 298-300. DOI: 10.16289/j.cnki.1002-0837.1998.04.016 . |
SUN Y Z, HUANG L Y, ZHANG Q, et al. Changes of calcium and magnesium contents and stereology in skeletal muscle mitochondria of tail-suspended rats[J]. Space Med Med Eng, 1998, 11(4): 298-300. DOI: 10.16289/j.cnki.1002-0837.1998.04.016 . | |
16 | 吴苏娣, 樊小力, 唐斌, 等. 模拟失重对大鼠比目鱼肌肌梭超微结构的影响[J]. 航天医学与医学工程, 2002, 15(1):32-35. DOI: 10.16289/j.cnki.1002-0837.2002.01.007 . |
WU S D, FAN X L, TANG B, et al. Effects of simulated weightlessness on ultrastructure of soleus muscle spindle in rats[J]. Space Med Med Eng, 2002, 15(1):32-35. DOI: 10.16289/j.cnki.1002-0837.2002.01.007 . | |
17 | 陈英, 杨春敏, 毛高平, 等. 模拟失重对大鼠小肠黏膜紧密连接蛋白表达的影响[J]. 航天医学与医学工程, 2011, 24(5):327-331. DOI: 10.16289/j.cnki.1002-0837.2011.05.005 . |
CHEN Y, YANG C M, MAO G P, et al. Impact of simulated weightlessness on expression of tight junction proteins of small intestine mucous membrane in rats[J]. Space Med Med Eng, 2011, 24(5):327-331. DOI: 10.16289/j.cnki.1002-0837.2011.05.005 . | |
18 | 武强强, 张学英, 王德华, 等. 模拟失重对啮齿动物情绪和认知的影响及缓解措施研究进展[J]. 航天医学与医学工程, 2021, 34(2):183-188. DOI: 10.16289/j.cnki.1002-0837.2021.02.013 . |
WU Q Q, ZHANG X Y, WANG D H, et al. Research progress in effects of simulated weightlessness on emotion and cognition of rodents and mitigating measures[J]. Space Med Med Eng, 2021, 34(2):183-188. DOI: 10.16289/j.cnki.1002-0837.2021.02.013 . | |
19 | BAQAI F P, GRIDLEY D S, SLATER J M, et al. Effects of spaceflight on innate immune function and antioxidant gene expression[J]. J Appl Physiol, 2009, 106(6):1935-1942. DOI: 10.1152/japplphysiol.91361.2008 . |
20 | 纪依澜, 赵德明, 王菲, 等. 模拟失重实验动物模型的建立与评价[J]. 中国实验动物学报, 2023, 31(1):106-111. DOI: 10.3969/j.issn.1005-4847.2023.01.013 . |
JI Y L, ZHAO D M, WANG F, et al. Establishment and evaluation of experimental animal models simulating weightlessness[J]. Acta Lab Animalis Sci Sin, 2023, 31(1):106-111. DOI: 10.3969/j.issn.1005-4847.2023.01.013 . | |
21 | 吴华莉, 涂尾龙, 曹建国, 等. 小型猪在人类疾病模型方面的研究进展[J]. 养猪, 2021(4):63-67. DOI: 10.13257/j.cnki.21-1104/s.2021.04.019 . |
WU H L, TU W L, CAO J G, et al. Research progress of miniature pig in human disease models[J]. Swine Prod, 2021(4):63-67. DOI: 10.13257/j.cnki.21-1104/s.2021.04.019 . | |
22 | 谈诚, 李志利, 汪德生, 等. 四肢悬吊法对小型猪骨骼抗动态载荷功能的影响[C]//中国力学学会, 中国生物医学工程学会生物力学专业委员会. 第八届全国生物力学学术会议论文集. 上海: 医用生物力学, 2006: 160-161. |
TAN C, LI Z L, WANG D S, et al. Effect of hindlimb suspension on the dynamic load-bearing capacity of miniature pig skeleton[C]//Chinese Society of Theoretical and Applied Mechanics, Biomechanics Professional Committee of Chinese Society of Biomedical Engineering. Proceedings of the 8th National Conference on Biomechanics. Shanghai: Journal of Medical Biomechanics, 2006: 160-161. | |
23 | 杨超, 徐子涵, 李铠, 等. 头低位卧床对恒河猴骨代谢、糖脂代谢的抑制效应及其相关性分析[J]. 空间科学学报, 2020, 40(4):540-546. DOI: 10.11728/cjss2020.04.540 . |
YANG C, XU Z H, LI K, et al. Inhibitory effects of head-down bed rest on bone, glycolipid metabolism of Rhesus and their correlation analysis[J]. Chin J Space Sci, 2020, 40(4):540-546. DOI: 10.11728/cjss2020.04.540 . | |
24 | MATOMÄKI P, KAINULAINEN H, KYRÖLÄINEN H. Corrected whole blood biomarkers - the equation of Dill and Costill revisited[J]. Physiol Rep, 2018, 6(12): e13749. DOI: 10.14814/phy2.13749 . |
25 | 李家卉, 李方方, 张敏, 等. 海马神经元退行性变参与模拟失重所致大鼠认知损伤[J]. 航天医学与医学工程, 2021, 34(2):122-127. DOI: 10.16289/j.cnki.1002-0837.2021.02.005 . |
LI J H, LI F F, ZHANG M, et al. Hippocampal neuronal degeneration involved in cognitive impairment induced by simulated weight-lessness in rats[J]. Space Med Med Eng, 2021, 34(2):122-127. DOI: 10.16289/j.cnki.1002-0837.2021.02.005 . |
[1] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[2] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[3] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
[4] | LIU Kai, HU Yuqi, GENG Yatian, CHENG Wenjie, WANG Jing, WEI Taiyun, ZHAO Hongfang, LI Jiayu, JIAO Deling, ZHAO Hongye, WEI Hongjiang. Preliminary Study on Construction Method of Type 1 Diabetes Model in Banna Miniature Pig [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 384-392. |
[5] | DING Tiansong, XIE Jinghong, YANG Bin, LI Heqiao, QIAO Yizhuo, CHEN Xinru, TIAN Wenfan, LI Jiapei, ZHANG Wanyi, LI Fanxuan. Characteristics Evaluation and Application Analysis on Animal Models of Recurrent Spontaneous Abortion [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 393-404. |
[6] | Guangyuan YAO, Ping DONG, Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU. Research Progress on Animal Models of Long Bone Fractures [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. |
[7] | Fangqi BAO, Haiye TU, Mingsun FANG, Qian ZHANG, Minli CHEN. Advances in Research on Pathological and Molecular Mechanism of Hyperuricemic Nephropathy Based on Animal Models [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 180-191. |
[8] | Li ZHANG, Yu KUANG, Lingxia HAN. Advances in Comparative Medical Research on Anatomy and Histological Structure of Intervertebral Discs in Humans and Other Animals [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 192-201. |
[9] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[10] | . Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[11] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[12] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[13] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[14] | Shuzhen ZHANG, Yanguang ZHAO. Investigation Report on the Production and Utilization Status of Experimental Mini-pigs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 559-565. |
[15] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||