1 |
CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138:271-281. DOI: 10.1016/j.diabres.2018.02.023 .
|
2 |
HAY M, THOMAS D W, CRAIGHEAD J L, et al. Clinical development success rates for investigational drugs[J]. Nat Biotechnol, 2014, 32(1):40-51. DOI: 10.1038/nbt.2786 .
|
3 |
TURK J R, HENDERSON K K, VANVICKLE G D, et al. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease[J]. Int J Exp Pathol, 2005, 86(5):335-345. DOI: 10.1111/j.0959-9673.2005.00446.x .
|
4 |
YAN S, TU Z C, LIU Z M, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4):989-1002.e13. DOI: 10.1016/j.cell.2018.03.005 .
|
5 |
CHEN J, ZENG W, PAN W, et al. Symptoms of systemic lupus erythematosus are diagnosed in leptin transgenic pigs[J]. PLoS Biol, 2018, 16(8): e2005354. DOI: 10.1371/journal.pbio. 2005354 .
|
6 |
American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1):S20-S42. DOI: 10.2337/dc24-S002.
|
7 |
LENZEN S. The mechanisms of alloxan- and streptozotocin-induced diabetes[J]. Diabetologia, 2008, 51(2):216-226. DOI: 10.1007/s00125-007-0886-7 .
|
8 |
RENNER S, DOBENECKER B, BLUTKE A, et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research[J]. Theriogenology, 2016, 86(1):406-421. DOI: 10.1016/j.theriogenology. 2016.04.055 .
|
9 |
XU Z Y, CHEN W T, WANG L Y, et al. UCP1 knockin induces lipid dynamics and transcriptional programs in the skeletal muscles of pigs[J]. Front Cell Dev Biol, 2021, 9:808095. DOI: 10.3389/fcell.2021.808095 .
|
10 |
KOTTAISAMY C P D, RAJ D S, PRASANTH KUMAR V, et al. Experimental animal models for diabetes and its related complications-a review[J]. Lab Anim Res, 2021, 37(1):23. DOI: 10.1186/s42826-021-00101-4 .
|
11 |
HEINKE S, LUDWIG B, SCHUBERT U, et al. Diabetes induction by total pancreatectomy in minipigs with simultaneous splenectomy: a feasible approach for advanced diabetes research[J]. Xenotransplantation, 2016, 23(5):405-413. DOI: 10.1111/xen.12255 .
|
12 |
SOUTO G, DONAPETRY C, CALVIÑO J, et al. Metabolic acidosis-induced insulin resistance and cardiovascular risk[J]. Metab Syndr Relat Disord, 2011, 9(4):247-253. DOI: 10.1089/met.2010.0108 .
|
13 |
GIHA H A. Hidden chronic metabolic acidosis of diabetes type 2 (CMAD): clues, causes and consequences[J]. Rev Endocr Metab Disord, 2023, 24(4):735-750. DOI: 10.1007/s11154-023-09816-2 .
|
14 |
VOULGARI C, PAGONI S, PAXIMADAS S, et al. "Brittleness" in diabetes: easier spoken than broken[J]. Diabetes Technol Ther, 2012, 14(9):835-848. DOI: 10.1089/dia.2012.0058 .
|
15 |
COLE J B, FLOREZ J C. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7):377-390. DOI: 10.1038/s41581-020-0278-5 .
|
16 |
STAMNES S, SHEIKH M, GENYK Y, et al. Arterio-biliary fistula: a rare cause of hemobilia[J]. J Gastrointest Surg, 2022, 26(6):1338-1339. DOI: 10.1007/s11605-021-05118-7 .
|
17 |
MAYERLE J, SENDLER M, HEGYI E, et al. Genetics, cell biology, and pathophysiology of pancreatitis[J]. Gastroenterology, 2019, 156(7):1951-1968.e1. DOI: 10.1053/j.gastro.2018.11.081 .
|