Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (4): 306-312.DOI: 10.12300/j.issn.1674-5817.2021.163
Special Issue: 实验动物伦理与福利专辑
• Animal Experimental Techniques and Methods • Previous Articles Next Articles
Jiaqi CHEN(), Longbao LÜ(
)(
), Feiyan ZHANG, Rui LI, Yijiang LI, Lihong LI, Xiaodi ZHANG
Received:
2021-10-25
Revised:
2021-11-25
Online:
2022-08-25
Published:
2022-09-01
Contact:
Longbao Lü
CLC Number:
Jiaqi CHEN, Longbao LÜ, Feiyan ZHANG, Rui LI, Yijiang LI, Lihong LI, Xiaodi ZHANG. Application of Blood Microsampling and Its Implementation of the 3Rs in Non-clinical Studies of Drugs[J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 306-312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.163
微量采血法 Blood micro- sampling method | 基质类型 Matrix type | 基质形式 Matrix form | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
DBS | 全血 | 干燥 | 无需离心,储存和运输方面要求低 | 全血数据与血浆数据转化复杂,HCT效应,需要特殊的提取技术 |
DPS | 血浆 | 干燥 | 储存和运输方面要求低 | 需要特殊的提取技术,可能需要离心 |
VAMS | 全血、血浆、血清 | 干燥 | 储存和运输方面要求低,样品体积准确 | 全血数据与血浆数据转化复杂,血浆、血清制备程序复杂 |
CMS | 全血、血浆、血清 | 液体 | 样品体积准确 | 储存和运输要求高(-20 ℃),血浆、血清制备操作不便 |
Table 1 Common approaches for blood microsampling in non-clinical studies
微量采血法 Blood micro- sampling method | 基质类型 Matrix type | 基质形式 Matrix form | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
DBS | 全血 | 干燥 | 无需离心,储存和运输方面要求低 | 全血数据与血浆数据转化复杂,HCT效应,需要特殊的提取技术 |
DPS | 血浆 | 干燥 | 储存和运输方面要求低 | 需要特殊的提取技术,可能需要离心 |
VAMS | 全血、血浆、血清 | 干燥 | 储存和运输方面要求低,样品体积准确 | 全血数据与血浆数据转化复杂,血浆、血清制备程序复杂 |
CMS | 全血、血浆、血清 | 液体 | 样品体积准确 | 储存和运输要求高(-20 ℃),血浆、血清制备操作不便 |
1 | MACARTHUR CLARK J. The 3Rs in research: a contemporary approach to replacement, reduction and refinement[J]. Br J Nutr, 2018, 120(s1): S1-S7. DOI:10.1017/S0007114517002227 . |
2 | 莫菲. 比较法视野中的实验动物伦理与安全法治模式: 兼谈实验动物法与中国特色动物保护法体系建设的关系[J]. 法学评论, 2021, 39(6):148-158. DOI:10.13415/j.cnki.fxpl.2021.06.013 . |
MO F. Rule of law model of experimental animal ethics and safety in perspective of comparative law[J]. Law Rev, 2021, 39(6):148-158. DOI:10.13415/j.cnki.fxpl.2021.06.013 . | |
3 | CHAPMAN K, CHIVERS S, GLIDDON D, et al. Overcoming the barriers to the uptake of nonclinical microsampling in regulatory safety studies[J]. Drug Discov Today, 2014, 19(5):528-532. DOI:10.1016/j.drudis.2014.01.002 . |
4 | JONSSON O, STEFFEN A C, SUNDQUIST V S, et al. Capillary microsampling and analysis of 4-µl blood, plasma and serum samples to determine human α-synuclein elimination rate in mice[J]. Bioanalysis, 2013, 5(4):449-462. DOI:10.4155/bio.12.337 . |
5 | ICH. Questions and answers to ICH s 3a: note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies focus on microsampling [EB/OL]. (2017-11-16). . |
6 | BEAUDETTE P, BATEMAN K P. Discovery stage pharma-cokinetics using dried blood spots[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 809(1):153-158. DOI:10.1016/j.jchromb.2004.06.018 . |
7 | CLARK G T, HAYNES J J, BAYLISS M A J, et al. Utilization of DBS within drug discovery: development of a serial microsampling pharmacokinetic study in mice[J]. Bioanalysis, 2010, 2(8):1477-1488. DOI:10.4155/bio.10.91 . |
8 | BARFIELD M, SPOONER N, LAD R, et al. Application of dried blood spots combined with HPLC-MS/MS for the quantifi-cation of acetaminophen in toxicokinetic studies[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2008, 870(1):32-37. DOI:10.1016/j.jchromb.2008.05.025 . |
9 | COBB Z, DE VRIES R, SPOONER N, et al. In-depth study of homogeneity in DBS using two different techniques: results from the EBF DBS-microsampling consortium[J]. Bioanalysis, 2013, 5(17):2161-2169. DOI:10.4155/bio.13.171 . |
10 | FREY B S, DAMON D E, BADU-TAWIAH A K. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications[J]. Mass Spectrom Rev, 2020, 39(4):336-370. DOI:10.1002/mas.21601 . |
11 | CAPIAU S, WILK L S, AALDERS M C G, et al. A novel, nondestructive, dried blood spot-based hematocrit prediction method using noncontact diffuse reflectance spectroscopy[J]. Anal Chem, 2016, 88(12):6538-6546. DOI:10.1021/acs.analchem.6b01321 . |
12 | DAMON D E, YIN M Z, ALLEN D M, et al. Dried blood spheroids for dry-state room temperature stabilization of microliter blood samples[J]. Anal Chem, 2018, 90(15):9353-9358. DOI:10.1021/acs.analchem.8b01962 . |
13 | YOUHNOVSKI N, BERGERON A, FURTADO M, et al. Pre-cut dried blood spot (PCDBS): an alternative to dried blood spot (DBS) technique to overcome hematocrit impact[J]. Rapid Commun Mass Spectrom, 2011, 25(19):2951-2958. DOI:10.1002/rcm.5182 . |
14 | NAKAHARA T, OTANI N, UENO T, et al. Development of a hematocrit-insensitive device to collect accurate volumes of dried blood spots without specialized skills for measuring clozapine and its metabolites as model analytes[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1087-1088:70-79. DOI:10.1016/j.jchromb.2018.04.019 . |
15 | LENK G, SANDKVIST S, POHANKA A, et al. A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper[J]. Bioanalysis, 2015, 7(16):2085-2094. DOI:10.4155/bio.15.134 . |
16 | LI W K, DOHERTY J, FAVARA S, et al. Evaluation of plasma microsampling for dried plasma spots (DPS) in quantitative LC-MS/MS bioanalysis using ritonavir as a model compound[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 991:46-52. DOI:10.1016/j.jchromb.2015.03.026 . |
17 | LI W K, DUGYALA R, DEVINE P J, et al. Application of tail vein serial microsampling for plasma or dried plasma spots in toxicokinetic assessment in rats using acetaminophen as the model compound[J]. Biomed Chromatogr, 2020, 34(10): e4917. DOI:10.1002/bmc.4917 . |
18 | LI Y Y, HENION J, ABBOTT R, et al. The use of a membrane filtration device to form dried plasma spots for the quantitative determination of guanfacine in whole blood[J]. Rapid Commun Mass Spectrom, 2012, 26(10):1208-1212. DOI:10.1002/rcm.6212 . |
19 | STURM R, HENION J, ABBOTT R, et al. Novel membrane devices and their potential utility in blood sample collection prior to analysis of dried plasma spots[J]. Bioanalysis, 2015, 7(16):1987-2002. DOI:10.4155/bio.15.98 . |
20 | RYONA I, HENION J. A book-type dried plasma spot card for automated flow-through elution coupled with online SPE-LC-MS/MS bioanalysis of opioids and stimulants in blood[J]. Anal Chem, 2016, 88(22):11229-11237. DOI:10.1021/acs.analchem.6b03691 . |
21 | HAUSER J, LENK G, ULLAH S, et al. An autonomous microfluidic device for generating volume-defined dried plasma spots[J]. Anal Chem, 2019, 91(11):7125-7130. DOI:10.1021/acs.analchem.9b00204 . |
22 | DENNIFF P, SPOONER N. Volumetric absorptive micro-sampling: a dried sample collection technique for quanti-tative bioanalysis[J]. Anal Chem, 2014, 86(16):8489-8495. DOI:10.1021/ac5022562 . |
23 | SPOONER N, DENNIFF P, MICHIELSEN L, et al. A device for dried blood microsampling in quantitative bioanalysis: overcoming the issues associated blood hematocrit[J]. Bioanalysis, 2015, 7(6):653-659. DOI:10.4155/bio.14.310 . |
24 | THIRY J, EVRARD B, NYS G, et al. Sampling only ten microliters of whole blood for the quantification of poorly soluble drugs: Itraconazole as case study[J]. J Chromatogr A, 2017, 1479:161-168. DOI:10.1016/j.chroma.2016.12.009 . |
25 | NYS G, GALLEZ A, KOK M G M, et al. Whole blood microsampling for the quantitation of estetrol without derivatization by liquid chromatography-tandem mass spectrometry[J]. J Pharm Biomed Anal, 2017, 140:258-265. DOI:10.1016/j.jpba.2017.02.060 . |
26 | KITA K, NORITAKE K, MANO Y. Application of a volumetric absorptive microsampling device to a pharmacokinetic study of tacrolimus in rats: comparison with wet blood and plasma[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(1):91-102. DOI:10.1007/s13318-018-0493-7 . |
27 | DENNIFF P, PARRY S, DOPSON W, et al. Quantitative bioanalysis of paracetamol in rats using volumetric absorptive microsampling (VAMS)[J]. J Pharm Biomed Anal, 2015, 108:61-69. DOI:10.1016/j.jpba.2015.01.052 . |
28 | THIRY J, KOK M G M, COLLARD L, et al. Bioavailability enhancement of itraconazole-based solid dispersions produced by hot melt extrusion in the framework of the Three Rs rule[J]. Eur J Pharm Sci, 2017, 99:1-8. DOI:10.1016/j.ejps.2016.12.001 . |
29 | SPREADBOROUGH M J, DAY J, JACKSON-ADDIE K, et al. Bioanalytical implementation of plasma capillary micro-sampling: small hurdles, large gains[J]. Bioanalysis, 2013, 5(12):1485-1489. DOI:10.4155/bio.13.120 . |
30 | VERHAEGHE T, DILLEN L, STIELTJES H, et al. The application of capillary microsampling in GLP toxicology studies[J]. Bioanalysis, 2017, 9(7):531-540. DOI:10.4155/bio-2016-0297 . |
31 | VERHAEGHE T, DILLEN L, STIELTJES H, et al. Comparison of toxicokinetic parameters of a drug and two metabolites following traditional and capillary microsampling in rat[J]. Bioanalysis, 2019, 11(13):1233-1242. DOI:10.4155/bio-2019-0085 . |
32 | JONSSON O, PALMA VILLAR R, NILSSON L B, et al. Capillary microsampling of 25 µl blood for the determination of toxicokinetic parameters in regulatory studies in animals[J]. Bioanalysis, 2012, 4(6):661-674. DOI:10.4155/bio.12.25 . |
33 | DILLEN L, LOOMANS T, VAN DE PERRE G, et al. Blood microsampling using capillaries for drug-exposure determi-nation in early preclinical studies: a beneficial strategy to reduce blood sample volumes[J]. Bioanalysis, 2014, 6(3):293-306. DOI:10.4155/bio.13.286 . |
34 | WANG B, WANG L N, BATOG A, et al. Investigation on the effect of capillary microsampling on hematologic and toxicokinetic evaluation in regulatory safety studies in mice[J]. AAPS J, 2020, 22(2):55. DOI:10.1208/s12248-020-00438-z . |
35 | RAJE A A, MAHAJAN V, PATHADE V V, et al. Capillary microsampling in mice: effective way to move from sparse sampling to serial sampling in pharmacokinetics profiling[J]. Xenobiotica, 2020, 50(6):663-669. DOI:10.1080/00498254. 2019.1683259 . |
36 | ZHU L, WANG Y, JOYCE A, et al. Fit-for-purpose validation of a ligand binding assay for toxicokinetic study using mouse serial sampling[J]. Pharm Res, 2019, 36(12):169. DOI:10.1007/s11095-019-2699-z . |
37 | BOWEN C L, LICEA-PEREZ H, KARLINSEY M Z, et al. A novel approach to capillary plasma microsampling for quantitative bioanalysis[J]. Bioanalysis, 2013, 5(9):1131-1135. DOI:10.4155/bio.13.58 . |
38 | POWLES-GLOVER N, KIRK S, WILKINSON C, et al. Assessment of toxicological effects of blood microsampling in the vehicle dosed adult rat[J]. Regul Toxicol Pharmacol, 2014, 68(3):325-331. DOI:10.1016/j.yrtph.2014.01.001 . |
39 | BURNETT J E. Dried blood spot sampling: practical consider-ations and recommendation for use with preclinical studies[J]. Bioanalysis, 2011, 3(10):1099-1107. DOI:10.4155/bio.11.68 . |
40 | DIEHL K H, HULL R, MORTON D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes[J]. J Appl Toxicol, 2001, 21(1):15-23. DOI:10.1002/jat.727 . |
41 | SPARROW S S, ROBINSON S, BOLAM S, et al. Opportunities to minimise animal use in pharmaceutical regulatory general toxicology: a cross-company review[J]. Regul Toxicol Pharmacol, 2011, 61(2):222-229. DOI:10.1016/j.yrtph.2011.08.001 . |
42 | HOPPER L D. Automated microsampling technologies and enhancements in the 3Rs[J]. ILAR J, 2016, 57(2):166-177. DOI:10.1093/ilar/ilw020 . |
43 | POWLES-GLOVER N, KIRK S, JARDINE L, et al. Assessment of haematological and clinical pathology effects of blood microsampling in suckling and weaned juvenile rats[J]. Regul Toxicol Pharmacol, 2014, 69(3):425-433. DOI:10.1016/j.yrtph. 2014.05.006 . |
44 | NIU X Y, BEEKHUIJZEN M, SCHOONEN W, et al. Effects of capillary microsampling on toxicological endpoints in juvenile rats[J]. Toxicol Sci, 2016, 154(1):69-77. DOI:10.1093/toxsci/kfw146 . |
45 | MITCHARD T, KIRK S, GRANT C, et al. Investigation into the effect of microsampling on mouse fetuses and pregnant mice in the embryofetal development study design[J]. Reprod Toxicol, 2017, 67:140-145. DOI:10.1016/j.reprotox.2016.12.006 . |
46 | PENG S X, ROCKAFELLOW B A, SKEDZIELEWSKI T M, et al. Improved pharmacokinetic and bioavailability support of drug discovery using serial blood sampling in mice[J]. J Pharm Sci, 2009, 98(5):1877-1884. DOI:10.1002/jps.21533 . |
47 | JOYCE A P, WANG M M, LAWRENCE-HENDERSON R, et al. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics[J]. Pharm Res, 2014, 31(7):1823-1833. DOI:10.1007/s11095-013-1286-y . |
48 | KORFMACHER W, FITZGERALD M, LUO Y Y, et al. Capillary microsampling of whole blood for mouse PK studies: an easy route to serial blood sampling[J]. Bioanalysis, 2015, 7(4):449-461. DOI:10.4155/bio.14.275 . |
49 | PATEL N J, WICKREMSINHE E, HUI Y H, et al. Evaluation and optimization of blood micro-sampling methods: serial sampling in a cross-over design from an individual mouse[J]. J Pharm Pharm Sci, 2016, 19(4):496-510. DOI:10.18433/J3NK60 . |
50 | WAN K X, REIMER M T, METCHKAROVA M P, et al. Toxicokinetic evaluation of atrasentan in mice utilizing serial microsampling: validation and sample analysis in GLP study[J]. Bioanalysis, 2012, 4(11):1351-1361. DOI:10.4155/bio.12.91 . |
51 | SPOONER N, ANDERSON K D, SIPLE J, et al. Microsampling: considerations for its use in pharmaceutical drug discovery and development[J]. Bioanalysis, 2019, 11(10):1015-1038. DOI:10.4155/bio-2019-0041 . |
52 | CARON A, LELONG C, BARTELS T, et al. Clinical and anatomic pathology effects of serial blood sampling in rat toxicology studies, using conventional or microsampling methods[J]. Regul Toxicol Pharmacol, 2015, 72(3):429-439. DOI:10.1016/j.yrtph.2015.05.022 . |
53 | HATTORI N, TAKUMI A, SAITO K, et al. Effects of serial cervical or tail blood sampling on toxicity and toxicokinetic evaluation in rats[J]. J Toxicol Sci, 2020, 45(10):599-609. DOI:10.2131/jts.45.599 . |
[1] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Liping FENG, Qi ZHU, Jinxing LIN. Current Status and Reflection on the Study of Welfare for Laboratory Fish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 524-530. |
[4] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[5] | Miaomiao GONG, Ligui ZHOU, Jumei ZHAO, Changhong SHI. Application of Gastric Cancer Organoids in Precision Medicine Research [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 248-254. |
[6] | ZHOU Fei, WANG Hao-an. Review of Spontaneous and Drug-related Islet Fibrosis in Rats [J]. Laboratory Animal and Comparative Medicine, 2019, 39(3): 249-252. |
[7] | GE Xiao-mei, ZHANG Yi-xin, XIE Fu-bo, LIU Ji-bin, YANG Lei, QU Ying-ying, GU Ying, Li Xue-ting, YANG Wei-min, LIU Xi-peng, ZHOU He, QIANG Fu-lin. Establishment and Characterization of Patient Derived Gastric Cancer Cell Lines [J]. Laboratory Animal and Comparative Medicine, 2017, 37(4): 257-265. |
[8] | WEN Fu-li, ZHANG Jia, ZHENG He-ping, MA Lei, ZHANG Shi-lan, WANG Shou-kun. Effects of Different Drugs and Disinfectants on Sporulation of Coccidian Oocysts in Rabbit [J]. Laboratory Animal and Comparative Medicine, 2016, 36(4): 301-306. |
[9] | GU Yun-hao, CAO Chen-jie, HU Bi-yuan, WANG Jun, HAN Dong-dong, XU Ai-hua. Establishment of S180 Tumor Multidrug Resistance Mouse Model by Increasing PFC and Observation on Stability [J]. Laboratory Animal and Comparative Medicine, 2015, 35(5): 367-373. |
[10] | PENG Xiu-hua, CHEN Li-xiang, REN Xiao-nan, SHI Bi-sheng, XU Chun-hua, ZHOU Wen-jiang, ZHOU Xiao-hui. Establishment and Preliminary Evaluation of Hepatitis B Virus Transfection Mouse Model by Using Hydrodynamic Injection [J]. Laboratory Animal and Comparative Medicine, 2015, 35(1): 1-5. |
[11] | XU Chun-hua, YANG Lei, TANG Xu-zhen, HU Gang, GENG Qin, OU YANG Ke-dong, XIE Fu-bo, WANG Ke, QIN Xiao-ran, LIU Ji-bin, YANG Wei-min, TAO Wei-kang, ZHANG Yi-xin, ZHOU He. Initially Establishment and Characterization of Patient Derived Gastric Cancer Xenograft Models [J]. Laboratory Animal and Comparative Medicine, 2014, 34(4): 259-265. |
[12] | LIN Dan, ZHENG Jin-hua, ZHUANG Hua, SHI Ji-jing, LIN Yue-lin, WANG Zhu-gang, KUANG Ying. Generation of Trp53 Gene Knockout Mouse and Its Application in Carcinogenicity Assessment of Pharmaceuticals [J]. Laboratory Animal and Comparative Medicine, 2013, 33(6): 418-424. |
[13] | OU-YANG Ke-dong, LIU Ji-bin, WANG Ke, HU Gang, GU Ying, XIE Fu-bo, ZHAO Qiang, ZHANG Ya-hua, YANG Wei-min, WENG Dan-yi, ZHANG Yi-xin, QIN Xiao-ran. Preliminary Research in Establishment, Characterization, and Application of Human Primary Esophageal Cancer Xenograft Models [J]. Laboratory Animal and Comparative Medicine, 2013, 33(2): 90-98. |
[14] | ZHANG Wei1,ZHANG Zhong-guang2,XU Chong-hui3,OUYANG Shao-lun3,ZHAO Yong1,Hu Hai-xun1,LI Fu-rong1,LIN Yi-li1,ZHONG Nv-qi1,ZHUANG Shao-hui1,ZOU Yi-hai2. Acute Toxicity of Melamine and Detoxification of San Jin Tang(三金汤)in Mice [J]. , 2010, 30(3): 188-192. |
[15] | ZHOU Wei-Mrn1,SHENG Hong-Qiang2, CHEN Wen-Bin3, CAI Yue-Qin1,CHEN Min-Li1. Rodent Models of Colorectal Tumor and Evaluation System of Drugs [J]. , 2010, 30(1): 60-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||