Laboratory Animal and Comparative Medicine ›› 2015, Vol. 35 ›› Issue (4): 335-340.DOI: 10.3969/j.issn.1674-5817.2015.04.020
Previous Articles Next Articles
LI Yuan, ZHANG Mei-ying
Received:2015-05-31
Online:2015-08-25
Published:2015-08-25
CLC Number:
LI Yuan,ZHANG Mei-ying. Research Progress on Autophagy with Parkinson Disease and Related Models[J]. Laboratory Animal and Comparative Medicine, 2015, 35(4): 335-340. DOI: 10.3969/j.issn.1674-5817.2015.04.020.
| [1] Levine B, Kroemer G.Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42. [2] Mizushima N, Levine B, Cuervo AM, et al.Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075. [3] Ravikumar B, Sarkar S, Davies JE, et al.Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev, 2010, 90(4):1383-1435. [4] Klionsky DJ.The molecular machinery of autophagy: unanswered questions[J]. J Cell Sci, 2005, 118(Pt 1):7-18. [5] Reggiori F, Klionsky DJ.Autophagy in the eukaryotic cell[J]. Eukaryot Cell, 2002, 1(1):11-21. [6] Wang CW, Klionsky DJ.The molecular mechanism of autophagy[J]. Mol Med, 2003, 9(3-4):65-76. [7] Kim J, Kundu M, Viollet B, et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2):132-141. [8] Kuma A, Hatano M, Matsui M, et al.The role of autophagy during the early neonatal starvation period[J]. Nature, 2004, 432(7020):1032-1036. [9] Ng G, Huang J.The Significance of autophagy in cancer[J]. Mol Carcinog, 2005, 43(4):183-187. [10] Johansen T, Lamark T.Selective autophagy mediated by autophagic adapter proteins[J]. Autophagy, 2011, 7(3):279-296. [11] Wang K, Klionsky DJ.Mitochondria removal by autophagy[J]. Autophagy, 2011, 7(3):297-300. [12] Lamark T, Johansen T.Aggrephagy: selective disposal of protein aggregates by macroautophagy[J]. Int J Biochem Cell Biol, 2012, 2012:736905. [13] Singh R, Kaushik S, Wang Y, et al.Autophagy regulates lipid metabolism[J]. Nature, 2009, 458(7242):1131-1135. [14] Lockshin RA, Zakeri Z.Apoptosis, autophagy, and more[J]. Int J Biochem Cell Biol, 2004, 36(12):2405-2419. [15] Rodriguez-Enriquez S, He L, Lemasters JJ.Role of mitochondrial permeability transition pores in mitochondrial autophagy[J]. Int J Biochem Cell Biol, 2004, 36(12):2463. [16] Pattingre S, Tassa A, Qu X, et al.Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J]. Cell, 2005, 122(6):927-939. [17] Chen ZH, Lam HC, Jin Y, et al.Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smokeinduced emphysema[J]. Proc Natl Acad Sci U S A, 2010, 107(44): 18880-18885. [18] Choi AM, Ryter SW, Levine B, et al.Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(7):651-662. [19] 赵云罡, 李灿, 丁树哲, 等. 线粒体质量控制: 运动促进健康与预防疾病的靶向[J]. 生理科学进展, 2014, 45(5):327-331. [20] Jellinger KA.Basic mechanisms of neurodegeneration: a critical update[J]. J Cell Mol Med, 2010, 14(3):457-487. [21] Goedert M, Clavaguera F, Tolnay M.The propagation of prion-like protein inclusions in neurodegenerative diseases[J]. Trends Neurosci, 2010, 33(7):317-325. [22] Lynch-Day MA, Mao K, Wang K, et al.The role of autophagy in Parkinson’s disease[J]. Cold Spring Harb Perspect Med, 2012, 2(4):a009357. [23] Dawson TM, Dawson VL.The role of parkin in familial and sporadic Parkinson disease[J]. Mov Disord, 2010, 25(Suppl 1):S32-39. [24] Xiromerisiou G, Dardiotis E, Tsimourtou V, et al.Genetic basis of Parkins on disease[J]. Neurosurg Focus, 2010, 28(1):E7. [25] Palmer CS, Elgass KD, Parton RG, et al.Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission[J]. Biol Chem, 2013, 288(38):27584-27593. [26] Loson OC, Song Z, Chen H, et al.Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission[J]. Mol Biol Cell, 2013, 24(5):659-667. [27] Hoitzing H, Johnston IG, Jones NS.What is the function of mitochondrial networks A theoretical assessment of hypotheses and proposal for future research[J]. BioEssays, 2015, 37(6):687-700. [28] Kim J, Moody JP, Edgerly CK, et al.Mitochondrial loss, dysfunction and altered dynamics in Huntington disease[J]. Hum Mol Genet, 2010, 19(20):3919-3935. [29] Wang X, Su B, Siedlak S L, et al.Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins[J]. Proc Natl Acad Sci USA, 2008, 105(49):19318-19323. [30] Geisler S, Holmstr KM, Skujat D, et al.PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2):119-131. [31] Eiyama A, Okamoto K.PINK1/Parkin-mediated mitophagy in mammalian cells[J]. Curr Opin Cell Biol, 2015, 33:95-101. [32] Trancikova A, Tsika E, Moore DJ.Mitochondrial dysfunction in genetic animal models of Parkinson disease[J]. Antioxid Redox Signal, 2012, 16(9):896-919. [33] Sterky FH, Lee S, Wibom R, et al.Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo[J]. Proc Natl Acad Sci USA, 2011,108(31):12937-12942. [34] Pickrell AM,Youle RJ.The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson disease[J]. Neuron, 2015, 85(2):257-273. [35] Hsu LJ, Sagara Y, Arroyo A, et al.a-Synuclein promotes mitochondrial deficit and oxidative stress[J]. Am J Pathol, 2000, 157(2):401-410. [36] Winslow R, Chen CW, Corrochano S, et al.a-Synuclein impairs macroautophagy: implications for Parkinson disease[J]. J Cell Biol, 2010, 190(6):1023-1037. [37] Wong E, Cuervo AM.Autophagy gone awry in neurodegenerative diseases[J]. Nat Neurosci, 2010, 13(7):805-811. [38] Hao LY, Giasson BI, Bonini NM.DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function[J]. Proc Natl Acad Sci U S A, 2010, 107(21):9747-9752. [39] Narendra D, Tanaka A, Suen DF, et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. Cell Biol, 2008 , 183(5):795-803. [40] Seirafi M, Kozlov G, Gehring K.Parkin structure and function[J]. FEBS J, 2015, 282(11):2076-2088. [41] Narendra D, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1):e1 000298. [42] Matsuda N, Sato S, Shiba K, et al.PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. Cell Biol, 2010, 189(2):211-221. [43] Shiba K, Arai T, Sato S, et al.Parkin stabilizes PINK1 through direct interaction[J]. Biochem Biophys Res Commun, 2009, 383(3):331-335. [44] Um JW, Stichel-Gunkel C, Lübbert H, et al.Molecular interaction between Parkin and Pink1 in mammalian neuronal cells[J]. Mol Cell Neurosci, 2009, 40(4):421-432. [45] Sha D, Chin L S, Li L.Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kB signaling[J]. Hum Mol Genet, 2010, 19(2): 352-363. [46] Deas E, Wood NW, Plun-Favreau H.Mitophagy and Parkinson抯 disease: the PINK1-parkin link[J]. Biochim Biophys Acta, 2011, 1813(4):623-633. [47] Poole ACm, Thomas RE, Andrews LA, et al.The PINK1/Parkin pathway regulates mitochondrial morphology[J]. Proc Natl Acad Sci U S A, 2008, 105(5):1638-1643. [48] Deng H, Dodson MW, Huang H, et al.The Parkinson disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila[J]. Proc Natl Acad Sci U S A 2008, 105(38):14503-14508. [49] Clark IE, Dodson MW, Jiang C, et al.Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin[J]. Nature, 2006, 441(7097):1162-1166. [50] Irrcher I, Aleyasin H, Seifert EL, et al.Loss of the Parkinson disease-linked gene DJ-1 perturbs mitochondrial dynamics[J]. Hum Mol Genet, 2010, 19(19):3734-3746. [51] Krebiehl G, Ruckerbauer S, Burbulla LF, et al.Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson disease-associated protein DJ-1[J]. PLoS ONE, 2010, 5(2):e9367. [52] Gao H, Yang W, Qi Z, et al.DJ-1 Protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy[J]. J Mol Biol,2012, 423(2):232-248. [53] Ren H, Fu K, Mu C, et al.DJ-1, a cancer and Parkinson disease associated protein, regulates autophagy through JNK pathway in cancer cells[J]. Cancer Lett, 2010, 297(1):101-108. [54] Gonzalez-Polo R, Niso-Santano M, Moran JM, et al.Silencing DJ-1 reveals its contribution in paraquat-induced autophagy[J]. J Neurochem, 2009, 109(3):889-898. |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [3] | GONG Leilei, WANG Xiaoxia, FENG Xuewei, LI Xinlei, ZHAO Han, ZHANG Xueyan, FENG Xin. A Mouse Model and Mechanism Study of Premature Ovarian Insufficiency Induced by Different Concentrations of Cyclophosphamide [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 403-410. |
| [4] | JIANG Juan, SONG Ning, LIAN Wenbo, SHAO Congcong, GU Wenwen, SHI Yan. Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 393-402. |
| [5] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
| [6] | HU Min, DONG Lexuan, GAO Yi, XI Ziqi, SHEN Zihao, TANG Ruiyang, LUAN Xin, TANG Min, ZHANG Weidong. Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 318-330. |
| [7] | XIAO Linlin, YANG Yixuan, LI Shanshan, LUO Lanshiyu, YIN Siwei, SUN Juming, SHI Wei, OUYANG Yiqiang, LI Xiyi. Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 269-278. |
| [8] | LI Huiping, GAO Hongbin, WEN Jinyin, YANG Jinchun. Construction and Preliminary Application of Animal Disease Model Digital Atlas Database Platform [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 300-308. |
| [9] | LUO Lianlian, YUAN Yanchun, WANG Junling, SHI Guangsen. Advances in Mouse Models of Amyotrophic Lateral Sclerosis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 290-299. |
| [10] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [11] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
| [12] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [13] | LUO Shixiong, ZHANG Sai, CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. |
| [14] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
| [15] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||