Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (6): 605-612.DOI: 10.12300/j.issn.1674-5817.2024.078
• Animal Models of Human Diseases • Previous Articles Next Articles
ZHAO Xiaona1(
), WANG Peng2, YE Maoqing3, QU Xinkai1(
)(
)
Received:2024-05-31
Revised:2024-10-21
Online:2024-12-25
Published:2024-12-25
Contact:
QU Xinkai
CLC Number:
ZHAO Xiaona,WANG Peng,YE Maoqing,et al. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C[J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. DOI: 10.12300/j.issn.1674-5817.2024.078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.078
Figure 1 Changes in mouse weight and glucose tolerance after high-fat dietNote:Con is the control group;TC is the experimental group, i.e., the Triacsin C intraperitoneal injection group. A, Changes in body weight of the Con and TC groups at 0, 8,and 16 weeks of high-fat diet (n=6); B-C, Changes in the glucose tolerance of the Con and TC groups at 8 weeks (B) and 16 weeks (C) of high-fat diet, respectively (n=6). Compared to the control group,*P<0.05,**P<0.01.
Figure 2 Changes in ACSL1 expression in cardiac tissues of the different group of miceNote: Con is the control group; TC is the experimental group, i.e. the Triacsin C intraperitoneal injection group. A, Western blotting image of ACSL1 in cardiac tissue; B, Quantitative analysis of ACSL1 in cardiac tissue (n=6). Compared to the control group, *P<0.05.
参数 Parameters | 对照组 Con group | 实验组 TC group |
|---|---|---|
| LVEDD/mm | 3.59±0.12 | 3.06±0.36* |
| LVESD/mm | 2.25±0.26 | 2.47±0.71 |
| EDIVS/mm | 0.93±0.15 | 1.02±0.14 |
| LVEF/% | 70.87±8.71 | 54.79±10.27* |
| FS/% | 42.71±2.89 | 34.26±5.96* |
| E/A | 1.32±0.20 | 1.62±0.36 |
Table 1 Indexes of cardiac function in each group of mice measured by echocardiography
参数 Parameters | 对照组 Con group | 实验组 TC group |
|---|---|---|
| LVEDD/mm | 3.59±0.12 | 3.06±0.36* |
| LVESD/mm | 2.25±0.26 | 2.47±0.71 |
| EDIVS/mm | 0.93±0.15 | 1.02±0.14 |
| LVEF/% | 70.87±8.71 | 54.79±10.27* |
| FS/% | 42.71±2.89 | 34.26±5.96* |
| E/A | 1.32±0.20 | 1.62±0.36 |
Figure 3 Pathological changes in adipose tissues in each group of mice after 16 weeks of high-fat dietNote:Con is the control group; TC is the experimental group, i.e. the Triacsin C intraperitoneal injection group. A-B, HE staining of epididymal white adipose tissue (WAT) after 16 weeks of high-fat diet (n=6, ×100); C, Area of epididymal WAT of mice after 16 weeks of high-fat diet; D-E, HE staining of BAT after 16 weeks of high-fat diet (n=6, ×100); F, Area of BAT after 16 weeks of high-fat diet. Scale bar is 200 μm. Compared to the control group, *P<0.05.
Figure 4 Expression of CD31 and UCP1 in brown adipose tissues of different groups of miceNote: Con is the control group; TC is the experimental group, i.e., the Triacsin C intraperitoneal injection group. A, Staining of brown adipose tissue marker UCP1 (green, n=6, ×200), and vascular endothelial cell marker CD31 (red, n=6, ×200), with the cell nucleus stained blue (Scale bar is 100 μm); B, Analysis of CD31 and UCP1 marked area. Compared with the control group, *P<0.05.
| 1 | TOMKINS M, LAWLESS S, MARTIN-GRACE J, et al. Diagnosis and management of central diabetes insipidus in adults[J]. J Clin Endocrinol Metab, 2022, 107(10):2701-2715. DOI: 10.1210/clinem/dgac381 . |
| 2 | ATILA C, LOUGHREY P B, GARRAHY A, et al. Central diabetes insipidus from a patient's perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey[J]. Lancet Diabetes Endocrinol, 2022, 10(10):700-709. DOI: 10.1016/S2213-8587(22)00219-4 . |
| 3 | REUREAN-PINTILEI D, POTCOVARU C G, SALMEN T, et al. Assessment of cardiovascular risk categories and achievement of therapeutic targets in European patients with type 2 diabetes[J]. J Clin Med, 2024, 13(8):2196. DOI: 10.3390/jcm13082196 . |
| 4 | AL-AWAR A, KUPAI K, VESZELKA M, et al. Experimental diabetes mellitus in different animal models[J]. J Diabetes Res, 2016, 2016:9051426. DOI: 10.1155/2016/9051426 . |
| 5 | 杜小燕, 李长龙, 王冬平, 等. 长爪沙鼠自发性糖尿病模型近交系培育及其生物学特性的研究进展[J]. 中国实验动物学报, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 . |
| DU X Y, LI C L, WANG D P, et al. Research progress in the establishment of a spontaneous diabetic inbred gerbil and its biological characteristics[J]. Acta Lab Animalis Sci Sin, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 . | |
| 6 | 唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 . |
| TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type Ⅱ diabetes animal models[J]. Acta Lab Animalis Sci Sin, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 . | |
| 7 | 崔淼, 朱春江, 刘向荣. 糖尿病动物模型构建的研究进展[J]. 中国实验诊断学, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 . |
| CUI M, ZHU C J, LIU X R. Research progress on the construction of animal model of diabetes mellitus[J]. Chin J Lab Diagn, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 . | |
| 8 | LUTZ T A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2023, 19(6):350-360. DOI: 10.1038/s41574-023-00818-3 . |
| 9 | MARTÍN-CARRO B, DONATE-CORREA J, FERNÁNDEZ-VILLABRILLE S, et al. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities[J]. Int J Mol Sci, 2023, 24(12):10309. DOI: 10.3390/ijms241210309 . |
| 10 | REN G, BHATNAGAR S, HAHN D J, et al. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): E893-E903. DOI: 10.1152/ajpendo.00117.2020 . |
| 11 | PRIOR A M, ZHANG M, BLAKEMAN N, et al. Inhibition of long chain fatty acyl-CoA synthetase (ACSL) and ischemia reperfusion injury[J]. Bioorg Med Chem Lett, 2014, 24(4):1057-1061. DOI: 10.1016/j.bmcl.2014.01.016 . |
| 12 | 赵小娜, 王聪, 申程, 等. 反式脂肪酸摄取加重糖尿病小鼠脂代谢异常及初步机制研究[J]. 中国分子心脏病学杂志, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 . |
| ZHAO X N, WANG C, SHEN C, et al. Trans fatty acids aggravate lipid metabolism dysfunction in STZ-induced diabetic mice and its possible mechanism[J]. Mol Cardiol China, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 . | |
| 13 | MA Y J, ZHA J Y, YANG X K, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation[J]. Oncogene, 2021, 40(10):1806-1820. DOI: 10.1038/s41388-021-01667-y . |
| 14 | WANG C H, SURBHI, GORAYA S, et al. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease[J]. J Biol Chem, 2024, 300(1):105502. DOI: 10.1016/j.jbc.2023.105502 . |
| 15 | SANTORO A, KAHN B B. Adipocyte regulation of insulin sensitivity and the risk of type 2 diabetes[J]. N Engl J Med, 2023, 388(22):2071-2085. DOI: 10.1056/NEJMra2216691 . |
| 16 | KOTZBECK P, GIORDANO A, MONDINI E, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation[J]. J Lipid Res, 2018, 59(5):784-794. DOI: 10.1194/jlr.M079665 . |
| 17 | LIN J R, DING L L, XU L, et al. Brown adipocyte ADRB3 mediates cardioprotection via suppressing exosomal iNOS[J]. Circ Res, 2022, 131(2):133-147. DOI: 10.1161/CIRCRESAHA. 121.320470 . |
| 18 | TANG X F, MIAO Y F, LUO Y J, et al. Suppression of endothelial AGO1 promotes adipose tissue browning and improves metabolic dysfunction[J]. Circulation, 2020, 142(4):365-379. DOI: 10.1161/CIRCULATIONAHA.119.041231 . |
| 19 | WANG H D, SHEN L, SUN X T, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity[J]. Nat Commun, 2019, 10(1):3254. DOI: 10.1038/s41467-019-11270-1 . |
| 20 | ADACHI Y, UEDA K, NOMURA S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling[J]. Nat Commun, 2022, 13(1):5117. DOI: 10.1038/s41467-022-32658-6 . |
| 21 | YIN T T, CHEN S, ZENG G H, et al. Angiogenesis-browning interplay mediated by asprosin-knockout contributes to weight loss in mice with obesity[J]. Int J Mol Sci, 2022, 23(24):16166. DOI: 10.3390/ijms232416166 . |
| 22 | CHOUCHANI E T, KAZAK L, JEDRYCHOWSKI M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1[J]. Nature, 2016, 532(7597):112-116. DOI: 10.1038/nature17399 . |
| 23 | YANG Y, BEIGNEUX A P, SONG W X, et al. Hypertriglyceridemia in Apoa5-/ - mice results from reduced amounts of lipoprotein lipase in the capillary lumen[J]. J Clin Invest, 2023, 133(23): e172600. DOI: 10.1172/JCI172600 . |
| 24 | CHENG L, ZHANG S F, SHANG F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue[J]. Front Endocrinol, 2021, 12:618037. DOI: 10.3389/fendo.2021.618037 . |
| 25 | TANAKA Y, NAGOSHI T, TAKAHASHI H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice[J]. Mol Metab, 2022, 55:101411. DOI: 10.1016/j.molmet.2021.101411 . |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
| [3] | LIU Yueqin, XUE Weiguo, WANG Shuyou, SHEN Yaohua, JIA Shuyong, WANG Guangjun, SONG Xiaojing. Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 457-465. |
| [4] | KONG Zhihao, WEI Xiaofeng, YU Lingzhi, FENG Liping, ZHU Qi, SHI Guojun, WANG Chen. Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 368-375. |
| [5] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [6] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
| [7] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [8] | LUO Shixiong, ZHANG Sai, CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. |
| [9] | XU Qiuyu, YAN Guofeng, FU Li, FAN Wenhua, ZHOU Jing, ZHU Lian, QIU Shuwen, ZHANG Jie, WU Ling. A Mouse Model of Polycystic Ovary Syndrome Established Through Subcutaneous Administration of Letrozole Sustained-Release Pellets and Hepatic Transcriptome Analysis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 119-129. |
| [10] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
| [11] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
| [12] | ZHANG Nan, LI Huaiyin, LIAN Xiaodi, WEI Juanpeng, GAO Ming. Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 73-78. |
| [13] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
| [14] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
| [15] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||