Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (6): 605-612.DOI: 10.12300/j.issn.1674-5817.2024.078
• Animal Models of Human Diseases • Previous Articles Next Articles
ZHAO Xiaona1(), WANG Peng2, YE Maoqing3, QU Xinkai1(
)(
)
Received:
2024-05-31
Revised:
2024-10-21
Online:
2024-12-25
Published:
2025-01-04
Contact:
QU Xinkai
CLC Number:
ZHAO Xiaona,WANG Peng,YE Maoqing,et al. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C[J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. DOI: 10.12300/j.issn.1674-5817.2024.078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.078
Figure 1 Changes in mouse weight and glucose tolerance after high-fat dietNote:Con is the control group;TC is the experimental group, i.e., the Triacsin C intraperitoneal injection group. A, Changes in body weight of the Con and TC groups at 0, 8,and 16 weeks of high-fat diet (n=6); B-C, Changes in the glucose tolerance of the Con and TC groups at 8 weeks (B) and 16 weeks (C) of high-fat diet, respectively (n=6). Compared to the control group,*P<0.05,**P<0.01.
Figure 2 Changes in ACSL1 expression in cardiac tissues of the different group of miceNote: Con is the control group; TC is the experimental group, i.e. the Triacsin C intraperitoneal injection group. A, Western blotting image of ACSL1 in cardiac tissue; B, Quantitative analysis of ACSL1 in cardiac tissue (n=6). Compared to the control group, *P<0.05.
参数 Parameters | 对照组 Con group | 实验组 TC group |
---|---|---|
LVEDD/mm | 3.59±0.12 | 3.06±0.36* |
LVESD/mm | 2.25±0.26 | 2.47±0.71 |
EDIVS/mm | 0.93±0.15 | 1.02±0.14 |
LVEF/% | 70.87±8.71 | 54.79±10.27* |
FS/% | 42.71±2.89 | 34.26±5.96* |
E/A | 1.32±0.20 | 1.62±0.36 |
Table 1 Indexes of cardiac function in each group of mice measured by echocardiography
参数 Parameters | 对照组 Con group | 实验组 TC group |
---|---|---|
LVEDD/mm | 3.59±0.12 | 3.06±0.36* |
LVESD/mm | 2.25±0.26 | 2.47±0.71 |
EDIVS/mm | 0.93±0.15 | 1.02±0.14 |
LVEF/% | 70.87±8.71 | 54.79±10.27* |
FS/% | 42.71±2.89 | 34.26±5.96* |
E/A | 1.32±0.20 | 1.62±0.36 |
Figure 3 Pathological changes in adipose tissues in each group of mice after 16 weeks of high-fat dietNote:Con is the control group; TC is the experimental group, i.e. the Triacsin C intraperitoneal injection group. A-B, HE staining of epididymal white adipose tissue (WAT) after 16 weeks of high-fat diet (n=6, ×100); C, Area of epididymal WAT of mice after 16 weeks of high-fat diet; D-E, HE staining of BAT after 16 weeks of high-fat diet (n=6, ×100); F, Area of BAT after 16 weeks of high-fat diet. Scale bar is 200 μm. Compared to the control group, *P<0.05.
Figure 4 Expression of CD31 and UCP1 in brown adipose tissues of different groups of miceNote: Con is the control group; TC is the experimental group, i.e., the Triacsin C intraperitoneal injection group. A, Staining of brown adipose tissue marker UCP1 (green, n=6, ×200), and vascular endothelial cell marker CD31 (red, n=6, ×200), with the cell nucleus stained blue (Scale bar is 100 μm); B, Analysis of CD31 and UCP1 marked area. Compared with the control group, *P<0.05.
1 | TOMKINS M, LAWLESS S, MARTIN-GRACE J, et al. Diagnosis and management of central diabetes insipidus in adults[J]. J Clin Endocrinol Metab, 2022, 107(10):2701-2715. DOI: 10.1210/clinem/dgac381 . |
2 | ATILA C, LOUGHREY P B, GARRAHY A, et al. Central diabetes insipidus from a patient's perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey[J]. Lancet Diabetes Endocrinol, 2022, 10(10):700-709. DOI: 10.1016/S2213-8587(22)00219-4 . |
3 | REUREAN-PINTILEI D, POTCOVARU C G, SALMEN T, et al. Assessment of cardiovascular risk categories and achievement of therapeutic targets in European patients with type 2 diabetes[J]. J Clin Med, 2024, 13(8):2196. DOI: 10.3390/jcm13082196 . |
4 | AL-AWAR A, KUPAI K, VESZELKA M, et al. Experimental diabetes mellitus in different animal models[J]. J Diabetes Res, 2016, 2016:9051426. DOI: 10.1155/2016/9051426 . |
5 | 杜小燕, 李长龙, 王冬平, 等. 长爪沙鼠自发性糖尿病模型近交系培育及其生物学特性的研究进展[J]. 中国实验动物学报, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 . |
DU X Y, LI C L, WANG D P, et al. Research progress in the establishment of a spontaneous diabetic inbred gerbil and its biological characteristics[J]. Acta Lab Animalis Sci Sin, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 . | |
6 | 唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 . |
TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type Ⅱ diabetes animal models[J]. Acta Lab Animalis Sci Sin, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 . | |
7 | 崔淼, 朱春江, 刘向荣. 糖尿病动物模型构建的研究进展[J]. 中国实验诊断学, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 . |
CUI M, ZHU C J, LIU X R. Research progress on the construction of animal model of diabetes mellitus[J]. Chin J Lab Diagn, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 . | |
8 | LUTZ T A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2023, 19(6):350-360. DOI: 10.1038/s41574-023-00818-3 . |
9 | MARTÍN-CARRO B, DONATE-CORREA J, FERNÁNDEZ-VILLABRILLE S, et al. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities[J]. Int J Mol Sci, 2023, 24(12):10309. DOI: 10.3390/ijms241210309 . |
10 | REN G, BHATNAGAR S, HAHN D J, et al. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): E893-E903. DOI: 10.1152/ajpendo.00117.2020 . |
11 | PRIOR A M, ZHANG M, BLAKEMAN N, et al. Inhibition of long chain fatty acyl-CoA synthetase (ACSL) and ischemia reperfusion injury[J]. Bioorg Med Chem Lett, 2014, 24(4):1057-1061. DOI: 10.1016/j.bmcl.2014.01.016 . |
12 | 赵小娜, 王聪, 申程, 等. 反式脂肪酸摄取加重糖尿病小鼠脂代谢异常及初步机制研究[J]. 中国分子心脏病学杂志, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 . |
ZHAO X N, WANG C, SHEN C, et al. Trans fatty acids aggravate lipid metabolism dysfunction in STZ-induced diabetic mice and its possible mechanism[J]. Mol Cardiol China, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 . | |
13 | MA Y J, ZHA J Y, YANG X K, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation[J]. Oncogene, 2021, 40(10):1806-1820. DOI: 10.1038/s41388-021-01667-y . |
14 | WANG C H, SURBHI, GORAYA S, et al. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease[J]. J Biol Chem, 2024, 300(1):105502. DOI: 10.1016/j.jbc.2023.105502 . |
15 | SANTORO A, KAHN B B. Adipocyte regulation of insulin sensitivity and the risk of type 2 diabetes[J]. N Engl J Med, 2023, 388(22):2071-2085. DOI: 10.1056/NEJMra2216691 . |
16 | KOTZBECK P, GIORDANO A, MONDINI E, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation[J]. J Lipid Res, 2018, 59(5):784-794. DOI: 10.1194/jlr.M079665 . |
17 | LIN J R, DING L L, XU L, et al. Brown adipocyte ADRB3 mediates cardioprotection via suppressing exosomal iNOS[J]. Circ Res, 2022, 131(2):133-147. DOI: 10.1161/CIRCRESAHA. 121.320470 . |
18 | TANG X F, MIAO Y F, LUO Y J, et al. Suppression of endothelial AGO1 promotes adipose tissue browning and improves metabolic dysfunction[J]. Circulation, 2020, 142(4):365-379. DOI: 10.1161/CIRCULATIONAHA.119.041231 . |
19 | WANG H D, SHEN L, SUN X T, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity[J]. Nat Commun, 2019, 10(1):3254. DOI: 10.1038/s41467-019-11270-1 . |
20 | ADACHI Y, UEDA K, NOMURA S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling[J]. Nat Commun, 2022, 13(1):5117. DOI: 10.1038/s41467-022-32658-6 . |
21 | YIN T T, CHEN S, ZENG G H, et al. Angiogenesis-browning interplay mediated by asprosin-knockout contributes to weight loss in mice with obesity[J]. Int J Mol Sci, 2022, 23(24):16166. DOI: 10.3390/ijms232416166 . |
22 | CHOUCHANI E T, KAZAK L, JEDRYCHOWSKI M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1[J]. Nature, 2016, 532(7597):112-116. DOI: 10.1038/nature17399 . |
23 | YANG Y, BEIGNEUX A P, SONG W X, et al. Hypertriglyceridemia in Apoa5-/ - mice results from reduced amounts of lipoprotein lipase in the capillary lumen[J]. J Clin Invest, 2023, 133(23): e172600. DOI: 10.1172/JCI172600 . |
24 | CHENG L, ZHANG S F, SHANG F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue[J]. Front Endocrinol, 2021, 12:618037. DOI: 10.3389/fendo.2021.618037 . |
25 | TANAKA Y, NAGOSHI T, TAKAHASHI H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice[J]. Mol Metab, 2022, 55:101411. DOI: 10.1016/j.molmet.2021.101411 . |
[1] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[2] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
[3] | TIAN Fang, PAN Bin, SHI Jiayi, XU Yanyi, LI Weihua. Advances in Development of PM2.5-Exposed Animal Models and Their Application in Reproductive Toxicity Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 626-635. |
[4] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[5] | TAN He, YANG Xiaohui, ZHANG Daxiu, WANG Guicheng. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. |
[6] | MENG Yu, LIANG Dongli, ZHENG Linlin, ZHOU Yuanyuan, WANG Zhaoxia. Optimization and Evaluation of Conditions for Orthotopic Nude Mouse Models of Human Liver Tumor Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 511-522. |
[7] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[8] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[9] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
[10] | DING Tiansong, XIE Jinghong, YANG Bin, LI Heqiao, QIAO Yizhuo, CHEN Xinru, TIAN Wenfan, LI Jiapei, ZHANG Wanyi, LI Fanxuan. Characteristics Evaluation and Application Analysis on Animal Models of Recurrent Spontaneous Abortion [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 393-404. |
[11] | Jing QIN, Yong ZHAO, Caiqin ZHANG, Bing BAI, Changhong SHI. Construction and Evaluation of Theranostic Near-infrared Fluorescent Probe for Targeting Inflammatory Brain Edema [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 243-250. |
[12] | Yisu ZHANG, Xinru LIU, Ruojie WU, Rui LIU, Hong OUYANG, Xiaohong LI. Establishment and Evaluation of Mouse Model of Pregnancy Pain-depression Comorbidity Induced by Chronic Unpredictable Stress, Complete Freund's Adjuvant and Formalin [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 259-269. |
[13] | Dong WU, Rui SHI, Peishan LUO, Ling'en LI, Xijing SHENG, Mengyang WANG, Lu NI, Sujuan WANG, Huixin YANG, Jing ZHAO. Effects of Different Pellet Feed Hardness on Growth and Reproduction, Feed Utilization Rate, and Environmental Dust in Laboratory Mice [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 313-320. |
[14] | Guangyuan YAO, Ping DONG, Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU. Research Progress on Animal Models of Long Bone Fractures [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. |
[15] | Yun LIU, Tingting FENG, Wei TONG, Zhi GUO, Xia LI, Qi KONG, Zhiguang XIANG. Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 251-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||