Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (4): 253-259.DOI: 10.3969/j.issn.1674-5817.2019.04.001
Special Issue: 专家论坛
WANG Yu-e, ZHANG He, CHEN Hong-yan
Received:
2019-05-05
Online:
2019-08-25
Published:
2021-01-31
CLC Number:
WANG Yu-e,ZHANG He,CHEN Hong-yan. Research Progress on Infection Model in Experimental Pigs[J]. Laboratory Animal and Comparative Medicine, 2019, 39(4): 253-259. DOI: 10.3969/j.issn.1674-5817.2019.04.001.
[1] 赵莉, 施臻, 高诚. 动物实验与诺贝尔生理或医学奖[J]. 实验动物与比较医学, 2011, 31(4):301-303. [2] Meurens F, Summerfield A, Nauwynck H, et al.The pig: a model for human infectious diseases[J]. Trends Microbiol, 2012, 20(1):50-57. [3] Lind NM, Moustgaard A, Jelsing J, et al.The use of pigs in neuroscience: modeling brain disorders[J]. Neurosci Biobehav Rev, 2007, 31(5):728-751. [4] Lunney JK.Advances in swine biomedical model genomics[J]. Int J Biol Sci, 2007, 3(3):179-184. [5] Amaral AJ, Megens HJ, Kerstens HH, et al.Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome[J]. BMC Genomics, 2009, 10: 374. [6] Ramos AM, Crooijmans RP, Affara NA, et al.Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology[J]. PLoS One, 2009, 4(8):e6524. [7] Rogers CS, Stoltz DA, Meyerholz DK, et al.Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs[J]. Science, 2008, 321(5897):1837-1841. [8] Tuggle CK, Wang Y, Couture O.Advances in swine transcriptomics[J]. Int J Biol Sci, 2007, 3(3):132-152. [9] Whitworth KM, Benne JA, Spate LD, et al.Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs[J]. Transgenic Res, 2017, 26(1):97-107. [10] Aigner B, Klymiuk N, Wolf E.Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression[J]. Curr Opin Organ Transplant, 2010, 15(2):201-206. [11] Bendixen E, Danielsen M, Larsen K, et al.Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research[J]. Brief Funct Genomics, 2010, 9(3):208-219. [12] 商海涛, 魏泓. 我国小型猪品系资源状况初浅分析[J]. 中国实验动物学报, 2007, 15(1):70-74. [13] 张贺, 王承利, 王洋, 等. 小型猪动物模型在医学领域中的研究应用[J]. 中国畜牧兽医, 2012, 39(7):263-267. [14] De Almeida AM, Bendixen E.Pig proteomics: a review of a species in the crossroad between biomedical and food sciences[J]. J Proteomics, 2012, 75(14):4296-4314. [15] Verma N, Rettenmeier AW, Schmitz-Spanke S.Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies[J]. Proteomics, 2011, 11(4):776-793. [16] Rajao DS, Vincent AL.Swine as a model for influenza A virus infection and immunity[J]. ILAR J, 2015, 56(1):44-52. [17] Opriessnig T, Gerber PF, Halbur PG.Refinement of a colostrum-deprived pig model for infectious disease research[J]. MethodsX, 2018, 5:403-413. [18] Glorieux S, Favoreel HW, Steukers L, et al.A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa[J]. Vet Res, 2011, 42:58. [19] Glorieux S, Bachert C, Favoreel HW, et al.Herpes simplex virus type 1 penetrates the basement membrane in human nasal respiratory mucosa[J]. PLoS One, 2011, 6(7):e22160. [20] Krawczynski K, Meng XJ, Rybczynska J.Pathogenetic elements of hepatitis E and animal models of HEV infection[J]. Virus Res, 2011, 161(1):78-83. [21] Cao D, Cao QM, Subramaniam S, et al.Pig model mimicking chronic hepatitis E virus infection in immunocompromised patients to assess immune correlates during chronicity[J]. Proc Natl Acad Sci U S A, 2017, 114(27):6914-6923. [22] Darbellay J, Cox B, Lai K, et al.Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring[J]. EBioMedicine, 2017, 25:73-86. [23] Huang YW, Harrall KK, Dryman BA, et al.Serological profile of torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and -2), and between porcine and human anelloviruses[J]. J Virol, 2012, 86(19):10628-10639. [24] Kekarainen T, Segales J.Torque teno sus virus in pigs: an emerging pathogen?[J]. Transbound Emerg Dis, 2012, 59(Suppl 1):103-108. [25] Kekarainen T, Segales J.Torque teno virus infection in the pig and its potential role as a model of human infection[J]. Vet J, 2009, 180(2):163-168. [26] Ooi MH, Wong SC, Lewthwaite P, et al.Clinical features, diagnosis, and management of enterovirus 71[J]. Lancet Neurol, 2010, 9(11):1097-1105. [27] Wu JT, Jit M, Zheng Y, et al.Routine pediatric enterovirus 71 vaccination in China: a cost-effectiveness analysis[J]. PLoS Med, 2016, 13(3):e1001975. [28] Wang X, Xing M, Zhang C, et al.Neutralizing antibody responses to enterovirus and adenovirus in healthy adults in China[J]. Emerg Microbes Infect, 2014, 3(5):e30. [29] Nielsen OL, Iburg T, Aalbaek B, et al.A pig model of acute Staphylococcus aureus induced pyemia[J]. Acta Vet Scand, 2009, 51:14. [30] 陈敏, 周陶友, 陈文昭, 等. 耐甲氧西林金黄色葡萄球菌感染的临床和耐药性[J]. 中华医院感染学杂志, 2004, 14(2):223-225. [31] Jensen HE, Nielsen OL, Agerholm JS, et al.A non-traumatic Staphylococcus aureus osteomyelitis model in pigs[J]. In Vivo, 2010, 24(3):257-264. [32] Luna CM, Sibila O, Agusti C, et al.Animal models of ventilator-associated pneumonia[J]. Eur Respir J, 2009, 33(1):182-188. [33] Svedman P, Ljungh A, Rausing A, et al.Staphylococcal wound infection in the pig: Part I. Course[J]. Ann Plast Surg, 1989, 23(3):212-218. [34] Drijkoningen JJ, Rohde GG. Pneumococcal infection in adults: burden of disease[J]. Clin Microbiol Infect, 2014, 20 Suppl 5:45-51. [35] Welte T, Torres A, Nathwani D.Clinical and economic burden of community-acquired pneumonia among adults in Europe[J]. Thorax, 2012, 67(1):71-79. [36] De Greeff A, Van Selm S, Buys H, et al.Pneumococcal colonization and invasive disease studied in a porcine model[J]. BMC Microbiol, 2016, 16:102. [37] Elahi S, Brownlie R, Korzeniowski J, et al.Infection of newborn piglets with Bordetella pertussis: a new model for pertussis[J]. Infect Immun, 2005, 73(6):3636-3645. [38] Elahi S, Buchanan RM, Babiuk LA, et al.Maternal immunity provides protection against pertussis in newborn piglets[J]. Infect Immun, 2006, 74(5):2619-2627. [39] Elahi S, Thompson DR, Strom S, et al.Infection with Bordetella parapertussis but not Bordetella pertussis causes pertussis-like disease in older pigs[J]. J Infect Dis, 2008, 198(3):384-392. [40] Schluter D, Daubener W, Schares G, et al.Animals are key to human toxoplasmosis[J]. Int J Med Microbiol, 2014, 304(7):917-929. [41] Tenter AM, Heckeroth AR, Weiss LM.Toxoplasma gondii: from animals to humans[J]. Int J Parasitol, 2000, 30(12-13):1217-1258. [42] 刘佩梅, 申力, 郑凯, 等. 大蒜素与复方磺胺甲噁唑联用对弓形虫感染小鼠的保护作用[J]. 中国新药与临床杂志, 2002, 21(4):226-228. [43] Nau J, Eller SK, Wenning J, et al.Experimental porcine Toxoplasma gondii infection as a representative model for human toxoplasmosis[J]. Mediators Inflamm, 2017, 2017:3260289. [44] He YG, Mcculley JP, Alizadeh H, et al.A pig model of Acanthamoeba keratitis: transmission via contaminated contact lenses[J]. Invest Ophthalmol Vis Sci, 1992, 33(1): 126-133. [45] 陆继爽, 格日勒图. 非洲猪瘟流行病学研究进展[J]. 中国畜牧兽医, 2015, 42(12):3377-3382. [46] Galindo-Cardiel I, Ballester M, Solanes D, et al.Standardization of pathological investigations in the framework of experimental ASFV infections[J]. Virus Res, 2013, 173(1): 180-190. [47] Lacasta A, Monteagudo PL, Jimenez-Marin A, et al.Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection[J]. Vet Res, 2015, 46:135. [48] Huang Y, Haines DM, Harding JC.Snatch-farrowed, porcine-colostrum-deprived (SF-pCD) pigs as a model for swine infectious disease research[J]. Can J Vet Res, 2013, 77(2):81-88. [49] Liu S, Li W, Wang Y, et al.Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets[J]. Virol J, 2017, 14(1):227. |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIN Zhenhua, CHU Xiangyu, WEI Zhenxi, DONG Chuanjun, ZHAO Zenglin, SUN Xiaoxia, LI Qingyu, ZHANG Qi. Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 466-472. |
[3] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[4] | WANG Jiaoxiang, ZHANG Lu, CHEN Shuhan, JIAO Deling, ZHAO Heng, WEI Taiyun, GUO Jianxiong, XU Kaixiang, WEI Hongjiang. Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 379-392. |
[5] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[6] | TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. |
[7] | SHEN Huangyi, HUANG Yufei, YANG Yunpeng. Research Progress on Characteristics Analysis of Gut Microbiota and Its Sex Differences in Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 349-359. |
[8] | LIU Yuanyuan, XIN Wenshui, CHAO Zhe, CAO Zongxi, CAI Yifei, LI Qiang, LI Lingwei, LIU Guangliang. Identification and Analysis of MHCⅡ Genes in Wuzhishan Pigs [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 340-348. |
[9] | CAI Mengshi, SU Xing, SHAO Qiming. Implementation of "Three Simultaneities" for Occupational Health Protection Facilities in Laboratory Animal Institution Construction Project [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 221-228. |
[10] | ZHANG Qian, DENG Qingxiu, CAI Lin. Review on Occupational Health Risk Prevention and Control for Laboratory Animal Practitioners in Chinese General Universities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 206-213. |
[11] | XU Chao, SUN Qiufang, SHAO Qiming. Establishment of Occupational Health Related Files in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 214-220. |
[12] | SHAO Qiming, BIAN Yong, SHI Aimin. Key Points for Establishing Occupational Health and Safety Management System in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 188-196. |
[13] | HOU Dongxia, TIE Zuoxiu, LU Yong, NAN Panpan, BAO Jie. Exploration and Practice of Safe Access System Construction for Barrier Environment Facilities of Laboratory Animals: A Case Study on Xianlin Campus of Nanjing University [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 96-100. |
[14] | TANG Yingen, FENG Yaxian, ZHONG Min, WEI Zhen, WANG Lie, LIU Diwen. Polymorphism and Tissue Expression Analysis of TYR and MC1R Genes in Guinea Pigs with Different Coat-Color Phenotypes [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 21-29. |
[15] | LIU Wei, ZHANG Xinyan, HOU Fengtian, XU Zhongkan, MA Liying. Evaluation of Proficiency Validation Results for Air Change Rate Testing in Laboratory Animal Facilities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 87-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||