Laboratory Animal and Comparative Medicine ›› 2020, Vol. 40 ›› Issue (2): 159-165.DOI: 10.3969/j.issn.1674-5817.2020.02.013
Previous Articles Next Articles
XIA Mengxiong1,2, HAN Haihui1,2, LIANG Qianqian2, ZHAI Weitao1, XU Hao2
Received:2019-07-12
Online:2020-04-25
Published:2020-12-18
CLC Number:
XIA Mengxiong,HAN Haihui,LIANG Qianqian,et al. Research Progress on Animal Models of Osteoarthritis[J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 159-165. DOI: 10.3969/j.issn.1674-5817.2020.02.013.
| [1] Altman R, Asch E, Bloch D, et al.Development of criteria for the classification and reporting of osteoarthritis:classification of osteoarthritis of the knee[J]. Arthritis Rheum, 1986, 29(8):1039-1049. [2] Kerkhof H, Meulenbelt I, Akune T, et al.Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA onsortium[J]. Osteoarthr Cartilage, 2011, 19(3):254-254. [3] Allen D, Griffin M, Rodriguiz M, et al.Mice deficient for type Ⅸ collagen have decreased physical function and increased pain sensitivity[J]. Arthritis Rheum, 2009, 60(9):2684-2693. [4] Holmbeck K, Bianco P, Caterina J, et al.MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover[J]. Cell, 1999, 99(1):81-92. [5] Glasson S, Askew R, Sheppard B, et al.Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis[J]. Nature (London), 2005, 434(7033):644-648. [6] Li Y, Xu L, Olsen R.Lessons from genetic forms of osteoarthritis for the pathogenesis of the disease[J]. Osteoarthr Cartilage, 2007, 15(10):1101-1105. [7] Cornelis F, DeRoover A, Storms L, et al. Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice[J]. Osteoarthr Cartilage, 2018,27(3):513-525. [8] Young F.Mouse models of osteoarthritis provide new research tools[J]. Trends Pharmacol Sci, 2005, 26(7): 333-335. [9] Ameye L, Aria D, Jepsen K, et al.Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis[J]. Faseb J, 2002, 16(7):673-680. [10] Kannu P, Bateman JF, Belluoccio D, et al.Employing molecular genetics of chondrodysplasias to inform the study of osteoarthritis[J]. Arthritis Rheum, 2009, 60(2): 325-334. [11] Chen S, Gupta T, Barasz J, et al.Analysis of microarchitectural changes in a mouse temporomandibular joint osteoarthritis model[J]. Arch Oral Biol, 2009, 54(12):1091-1098. [12] Lin C, Seeto L, Bartoszko M, et al.Modulating hedgehog signaling can attenuate the severity of osteoarthritis[J]. Nature Med, 2009, 15(12):1421-1426. [13] 王腾腾, 徐浩, 王拥军, 等. 以肿瘤坏死因子α转基因小鼠为类风湿关节炎模型的研究进展[J]. 世界科学技术: 中医药现代化, 2016, 18(11):1869-1873. [14] Ch teauvert JMD, Pritzker H, Kessler J, et al. Spontaneous osteoarthritis in rhesus macaques.II. Chemical and biochemical studies[J]. J Rheumatol, 1989, 16(8):1098-1104. [15] Chateauvert JMD, Grynpas D, Kessler J, et al.Spontaneous osteoarthritis in rhesus macaques. II. Characterization of disease and morphometric studies[J]. J Rheumatol, 1990, 17(1):73-83. [16] Uchida K, Urabe K, Naruse K, et al.Hyperlipidemia and hyperinsulinemia in the spontaneous osteoarthritis mouse model, STR/Ort[J]. Exp Anim, 2009, 58(2):181-187. [17] Yamamoto K.Ultrastructural studies on the articular cartilage of spontaneous osteoarthritis in C 57 black mice[J]. Nippon Seikeigeka Gakkai Zasshi, 1990, 64(7):648-665. [18] Stoop R, van der K, Buma P, et al. Type Ⅱ collagen degradation in spontaneous osteoarthritis in C57BL/6 and BALB/c mice[J]. Arthritis Rheum, 1999, 42(11):2381-2389. [19] Anderson M, Billingham M, Bailey J.Collagen remodeling in the anterior cruciate ligament associated with developing spontaneous murine osteoarthritis[J]. Biochem Biophys Res Commun, 1999, 258(3):763-767. [20] Javaheri B, Poulet B, Aljazzar A, et al.Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis[J]. Bone, 2017, 103(1):308-317. [21] Liu R, Li J, Ren Q, et al.The molecular mechanism of treating osteoarthritis with dipsacus saponins by inhibiting chondrocyte apoptosis[J]. Exp Ther Med, 2017,14(5):4527-4532. [22] Rogart N, Barrach J, Chichester O.Articular collagen degradation in the Hulth-Telhag model of osteoarthritis[J]. Osteoarthr Cartilage, 1999, 7(6):539-547. [23] Wang Y, Bai L.Resveratrol inhibits apoptosis by increase in the proportion of chondrocytes in the S phase of cell cycle in articular cartilage of ACLT plus Mmx rats[J]. Saudi J Biol Sci, 2017, 26(4):839-844. [24] Proulx T, Kwok E, You Z, et al.Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrast-enhanced magnetic resonance imaging[J]. Arthritis Rheum,2008, 58(7):2019-2029. [25] Fang H, Huang L, Welch I, et al.Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis[J]. Sci Rep, 2018, 8(1):1-9. [26] Bagi M, Berryman R, Teo S, et al.Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of rticular cartilage in a rat model of OA[J]. Osteoarthr Cartilage, 2017, 25(12):2080-2090. [27] Murahashi Y,Yano F, Kobayashi H, et al.Intra-articular administration of κBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NFκB/HIF-2α axis[J]. Sci Rep, 2018, 8(1):16475-16475 [28] Makii Y, Asaka M, Setogawa S, et al.Alteration of gait parameters in a mouse model of surgically induced knee osteoarthritis[J]. J Orthop Surg, 2018, 26(2):1-7. [29] Namazi H, Emami M, Nazhvani F, et al.Effectiveness of methylene blue in the prevention of stifle joint arthrofibrosis in rabbit models[J]. J Bone Joint Surg, 2019, 3(7):269-277. [30] Marijnissen A, Roermund V, Verzijl N, et al.Steady progression of osteoarthritic features in the canine groove model[J]. Osteoarthr Cartilage, 2002, 10(4):282-289. [31] Yang K, Qiu Z, Wu J, et al.Rice porridge containing welsh onion root water extract alleviates osteoarthritis-related pain behaviors, glucose levels, and bone metabolism in osteoarthritis-induced ovariectomized rats[J]. Nutrients, 2019, 11(7):1503. [32] Lampropoulou-Adamidou K, Lelovas P, Karadimas V, et al.Useful animal models for the research of osteoarthritis[J]. Eur J Orthop Surg Traumatol, 2014, 24(3):263-271. [33] Pritzker K.Animal-models for osteoarthritis: processes, probelms and prospects[J]. Ann Rheum Dis, 1994, 53(6): 406-420 . [34] Udo M, Muneta T, Tsuji K, et al.Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems[J]. Osteoarthr Cartilage, 2016, 24(7):1284-1291. [35] Blaney Davidson EN, Vitters EL, van Beuningen HM, et al. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation[J]. Arthritis Rheum,2007, 56(12): 4065-4073. [36] Sukur E, Talu C, Akman E, et al.Comparison of the chondroprotective effect of a novel hydrogel compound and traditional hyaluronate on rat cartilage in a papain-induced osteoarthritis model[J]. Acta Orthop Traumato, 2016, 50(4):458-463. [37] Piecha D, Weik J, Kheil H, et al.Novel selective MMP-13 inhibitors reduce collagen degradation in bovine articular and human osteoarthritis cartilage explants[J]. Inflamm Res,2010, 59(5):379-389. [38] Christiansen A, Guilak F, Lockwood A, et al.Non-invasive mouse models of post-traumatic osteoarthritis[J]. Osteoarthr Cartilage, 2015, 23(10):1627-1638. [39] Christiansen A, Anderson J, Lee C, et al.Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis[J]. Osteoarthr Cartilage, 2012, 20(7):773-782. [40] Kramer C, Hendricks J, Wang J.Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention[J]. Int J Clin Exp Med, 2011, 4(4):285-298. [41] Poulet B, Hamilton W, Shefelbine S, et al.Characterizing a novel and adjustable noninvasive murine joint loading model[J]. Arthritis Rheum, 2011, 63(1):137-147. [42] Satkunananthan B, Anderson J, De Jesus M, et al.In vivo fluorescence reflectance imaging of protease activity in a mouse model of post-traumatic osteoarthritis[J]. Osteoarthr Cartilage, 2014, 22(10):1461-1269. [43] Furman D, Strand J, Hembree C, et al.Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis[J]. J Orthop Res, 2007, 25(5):578-592. [44] Lewis S, Hembree C, Furman D, et al.Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee[J]. Osteoarthr Cartilage, 2011, 19(7):864-873. [45] Melville M, Robling G, Meulen D.In vivo axial loading of the mouse tibia[J]. Methods Mol Biol, 2015, 1226(9):99-115. [46] Poulet B, de Souza R, Kent V, et al. Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions[J]. Osteoarthr Cartilage, 2015, 23(6):940-948. [47] Holyoak T, Chlebek C, Kim J, et al.Low-level cyclic tibial compression attenuates early osteoarthritis progression after joint injury in mice[J]. Osteoarthr Cartilage, 2019, 4584(19):31094-31095. [48] Lockwood A, Chu T, Anderson J, et al.Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2014, 32(1):79-88. [49] Wu P, Holguin N, Silva J, et al.Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets[J]. Arthritis Rheum, 2014, 66(5):1256-1265. [50] Khorasani S, Diko S, Hsia W, et al.Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice[J]. Arthritis Res Ther, 2015, 17(1):30. [51] Lahm A, Uhl M, Edlich M, et al.An experimental canine model for subchondral lesions of the knee joint[J]. Knee, 2005, 12(1):51-55. [52] Thompson Jr C, Oegema Jr R, Lewis L, et al.Osteoarthrotic changes after acute transarticular load[J]. J Bone Joint Surg Am, 1991, 73(7):990-1001. [53] Mrosek H, Lahm A, Erggelet C, et al.Subchondral bone trauma causes cartilage matrix degeneration: an immunohistochemical analysis in a canine model[J]. Osteoarthr Cartilage, 2006, 14(2):171-178. [54] Mccarty C, Fader R, Mitchell J, et al.Fresh osteochondral allograft versus autograft twelve-month results in isolated canine knee defects[J]. Am J Sport Med, 2016, 44(9):2354-2365. [55] Schmeer H.Comparison of platelet-rich plasma, stromal vascular fraction (SVF), or SVF with an injectable PLGA nanofiber scaffold for the treatment of osteochondral injury in dogs[J]. J K Surg, 2018, 31(7):686-697. [56] Rachel A, Shannon H, Samuel F.Magnetic resonance imaging diagnosis and arthroscopic treatment of medial meniscal injury in a dog with a palpably stable stifle[J]. Can Vet J, 2018, 59(6): 654-658. [57] Rundell A, Baars C, Phillips M, et al.The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral joint[J]. J Orthop Res, 2005, 23(6):1363-1369. [58] Newberry N, Mackenzie D, Haut C.Blunt impact causes changes in bone and cartilage in a regularly exercised animal model[J]. J Orthop Res, 1998, 16(3):348-354. [59] Piel J, Kroin S, van Wijnen J, et al. Pain assessment in animal models of osteoarthritis[J]. Gene, 2014, 537(2):184-188. |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | ZHENG Qingyong, YANG Donghua, MA Zhichao, ZHOU Ziyu, LU Yang, WANG Jingyu, XING Lina, KANG Yingying, DU Li, ZHAO Chunxiang, DI Baoshan, TIAN Jinhui. Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 496-507. |
| [3] | LIU Zhiwei, YANG Ran, LIAN Hao, ZHANG Yu, JIN Lilun. Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 259-268. |
| [4] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [5] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [6] | LI Tengfei, ZHENG Qingyong, XU Jianguo, LI Yiyi, ZHOU Yongjia, XU Caihua, ZHANG Mingyue, TIAN Jiexiang, WANG Gang, TIAN Jinhui. Improving the Certainty of Evidence in Animal Experiment Systematic Review/Meta-Analysis: An Empirical Study of the GRADE Method [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 101-111. |
| [7] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| [8] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
| [9] | XU Xiao, WU Jiemin, LIANG Yi, YE Mingxia, ZHOU Shunchang. Design and Implementation of a Software System for Full-Process Animal Experiment Ethical Review [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 682-690. |
| [10] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
| [11] | ZHAO Yong. Three Dimensions of Animal Experiment Ethics: Analysis Based on Value of Life, Animal Welfare, and Risk Prevention [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 445-454. |
| [12] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
| [13] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
| [14] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
| [15] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||