Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (3): 289-296.DOI: 10.12300/j.issn.1674-5817.2023.183
• Animal Models of Human Diseases • Previous Articles Next Articles
Guangyuan YAO, Ping DONG()(
), Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU
Received:
2023-12-18
Revised:
2024-04-10
Online:
2024-06-25
Published:
2024-07-06
Contact:
Ping DONG
CLC Number:
Guangyuan YAO,Ping DONG,Hao WU,et al. Research Progress on Animal Models of Long Bone Fractures[J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. DOI: 10.12300/j.issn.1674-5817.2023.183.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.183
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 使用范围 Range of application | 参考文献 References |
---|---|---|---|---|
骨缺损法 Bone defect method | 过程直观,控量精准,无需固定,成模稳定,成模率高,骨痂量大 | 难度大,易感染,忽略了软骨内成骨,与临床和传统骨折病机有差别 | 骨折中晚期愈合机制研究;对骨痂量有一定需求的研究;内服药物干预类研究;填充式药物和组织工程治疗研究 | [ |
物理撞击法 Physical impact method | 操作简便,损伤较小,切合临床骨折致病机制 | 可控性差(易形成粉碎性骨折和骨折位移),成模率低 | 骨折早中期愈合机制研究;对骨痂量需求不高的研究;经皮接触类研究 | [ |
力学弯折法 Mechanical bending method | 操作简便,参数可控,适用性广,损伤较小 | 难度大,可控性差(易形成粉碎性骨折和骨折位移) | 骨折早中期愈合机制研究;对骨痂量需求不高的研究 | [32-33, 3, 43] |
开放截骨法 Open osteotomy method | 过程直观,成模稳定,成模率高,骨痂量大,可控性强(切面光整) | 难度大,易感染,损伤强,难愈合 | 骨折中晚期愈合机制研究;对骨痂量有一定需求的研究;内服药物干预类研究 | [ |
钻孔法 Drill method | 过程直观,成模稳定,成模率高,损伤较小 | 难度大,易感染,骨痂量少 | 骨折中晚期愈合机制研究;骨折愈合的代谢活动研究;骨愈合药物的临床前安全性研究 | [36, 5, 47-49] |
Table 1 Common methods of establishing fracture animal models and their advantages and disadvantages
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 使用范围 Range of application | 参考文献 References |
---|---|---|---|---|
骨缺损法 Bone defect method | 过程直观,控量精准,无需固定,成模稳定,成模率高,骨痂量大 | 难度大,易感染,忽略了软骨内成骨,与临床和传统骨折病机有差别 | 骨折中晚期愈合机制研究;对骨痂量有一定需求的研究;内服药物干预类研究;填充式药物和组织工程治疗研究 | [ |
物理撞击法 Physical impact method | 操作简便,损伤较小,切合临床骨折致病机制 | 可控性差(易形成粉碎性骨折和骨折位移),成模率低 | 骨折早中期愈合机制研究;对骨痂量需求不高的研究;经皮接触类研究 | [ |
力学弯折法 Mechanical bending method | 操作简便,参数可控,适用性广,损伤较小 | 难度大,可控性差(易形成粉碎性骨折和骨折位移) | 骨折早中期愈合机制研究;对骨痂量需求不高的研究 | [32-33, 3, 43] |
开放截骨法 Open osteotomy method | 过程直观,成模稳定,成模率高,骨痂量大,可控性强(切面光整) | 难度大,易感染,损伤强,难愈合 | 骨折中晚期愈合机制研究;对骨痂量有一定需求的研究;内服药物干预类研究 | [ |
钻孔法 Drill method | 过程直观,成模稳定,成模率高,损伤较小 | 难度大,易感染,骨痂量少 | 骨折中晚期愈合机制研究;骨折愈合的代谢活动研究;骨愈合药物的临床前安全性研究 | [36, 5, 47-49] |
1 | HIXON K R, MILLER A N. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions[J]. J Orthop Res, 2022, 40(4):767-778. DOI: 10.1002/jor.25277 . |
2 | HANDOOL K O, IBRAHIM S M, KAKA U, et al. Optimization of a closed rat tibial fracture model[J]. J Exp Orthop, 2018, 5:13. DOI: 10.1186/s40634-018-0128-6 . |
3 | 张伟, 梁欢, 黄致超, 等. 闭合性胫骨骨折兔模型的建立与评估[J]. 中国骨伤, 2023, 36(7):662-668. DOI: 10.12200/j.issn.1003-0034.2023.07.013 . |
ZHANG W, LIANG H, HUANG Z C, et al. Establishment and evaluation of rabbit model of closed tibial fracture[J]. China J Orthop Traumatol, 2023, 36(7):662-668. DOI: 10.12200/j.issn.1003-0034.2023.07.013 . | |
4 | 刘明, 刘杨, 张永萍, 等. 新仙灵骨葆胶囊对大鼠骨折愈合的影响研究[J]. 中国药房, 2018, 29(9):1201-1204. DOI: 10.6039/j.issn.1001-0408.2018.09.12 . |
LIU M, LIU Y, ZHANG Y P, et al. Study on the effects of new xianling gubao capsule on fracture healing in rats[J]. China Pharm, 2018, 29(9):1201-1204. DOI: 10.6039/j.issn.1001-0408.2018.09.12 . | |
5 | 罗清龙, 唐良华, 熊屹, 等. 苗药九仙罗汉接骨汤促进SD大鼠胫骨骨折愈合中TGF-β1动态表达[J]. 贵州医药, 2019, 43(4):526-529. DOI: 10.3969/j.issn.1000-744X.2019.04.006 . |
LUO Q L, TANG L H, XIONG Y, et al. Miao Nationality's Medicine Jiuxianluohanjiegu Decoction promotes the dynamic expression of TGF-β1 in the healing of tibial fracture from SD rats[J]. Guizhou Med J, 2019, 43(4):526-529. DOI: 10.3969/j.issn.1000-744X.2019.04.006 . | |
6 | 侯雪峰, 高玉海, 柏鑫, 等. 大鼠股骨线性骨折模型建立方法的比较与优化改良[J]. 实验动物科学, 2023, 40(5):65-70. DOI: 10.3969/j.issn.1006-6179.2023.05.012 . |
HOU X F, GAO Y H, BAI X, et al. Comparison and improvement of methods for establishing linear fracture model of femur in rats[J]. Lab Anim Sci, 2023, 40(5):65-70. DOI: 10.3969/j.issn.1006-6179.2023.05.012 . | |
7 | GAO H, HUANG J M, WEI Q, et al. Advances in animal models for studying bone fracture healing[J]. Bioengineering, 2023, 10(2):201. DOI: 10.3390/bioengineering10020201 . |
8 | WANG Y, MA S G, SHI Y J, et al. Type 2 diabetes mellitus combined with estrogen deficiency delays fracture healing in rats[J]. Minerva Med, 2021, 112(5):664-666. DOI: 10.23736/S0026-4806.20.06481-2 . |
9 | HOLSTEIN J H, MATTHYS R, HISTING T, et al. Development of a stable closed femoral fracture model in mice[J]. J Surg Res, 2009, 153(1):71-75. DOI: 10.1016/j.jss.2008.02.042 . |
10 | LV F, CAI X L, JI L N. An update on animal models of osteogenesis imperfecta[J]. Calcif Tissue Int, 2022, 111(4):345-366. DOI: 10.1007/s00223-022-00998-6 . |
11 | MANIGRASSO M B, O'CONNOR J P. Comparison of fracture healing among different inbred mouse strains[J]. Calcif Tissue Int, 2008, 82(6):465-474. DOI: 10.1007/s00223-008-9144-3 . |
12 | GUNDERSON Z J, CAMPBELL Z R, MCKINLEY T O, et al. A comprehensive review of mouse diaphyseal femur fracture models[J]. Injury, 2020, 51(7):1439-1447. DOI: 10.1016/j.injury.2020.04.011 . |
13 | 周世博, 关健斌, 俞兴, 等. 股骨骨缺损动物模型制备现状及特点[J]. 中国组织工程研究, 2024, 28(4):633-638. DOI: 10.12307/2023.862 . |
ZHOU S B, GUAN J B, YU X, et al. Animal models of femoral bone defects: preparation status and characteristics[J]. Chin J Tissue Eng Res, 2024, 28(4):633-638. DOI: 10.12307/2023.862 . | |
14 | 艾子政, 董谢平. 新西兰兔骨缺损模型的文献综述[J]. 中国矫形外科杂志, 2021, 29(20):1863-1867. DOI: 10.3977/j.issn.1005-8478.2021.20.09 . |
AI Z Z, DONG X P. A review on bone defect models in New Zealand rabbits[J]. Orthop J China, 2021, 29(20):1863-1867. DOI: 10.3977/j.issn.1005-8478.2021.20.09 . | |
15 | 潘治军, 潘静心, 杨振邦, 等. 二次损伤炎症启动犬萎缩性骨不连模型骨痂生长的组织病理学分析[J]. 中国骨与关节损伤杂志, 2019, 34(10):1041-1045. DOI: 10.7531/j.issn.1672-9935.2019.10.011 . |
PAN Z J, PAN J X, YANG Z B, et al. Histopathological analysis of callus growth in canine atrophic nonunion model induced by secondary injury inflammation[J]. Chin J Bone Jt Inj, 2019, 34(10):1041-1045. DOI: 10.7531/j.issn.1672-9935.2019.10.011 . | |
16 | BRITS D, STEYN M, L´ABBÉ E N. A histomorphological analysis of human and non-human femora[J]. Int J Leg Med, 2014, 128(2):369-377. DOI: 10.1007/s00414-013-0854-3 . |
17 | 李静, 陈争晖, 凯迪丽娅·亚力坤, 等. 微渠多孔羟基磷灰石支架修复犬下颌骨大面积缺损后与种植体的骨结合[J]. 中国组织工程研究, 2023, 27(12):1920-1926. DOI: 10.12307/2023.023 . |
LI J, CHEN Z H, Yalikun Kaidiliya, et al. Osseointegration of micro-grooved patterns of porous hydroxyapatite scaffolds with implants after repairing large-area canine mandibular defects[J]. Chin J Tissue Eng Res, 2023, 27(12):1920-1926. DOI: 10.12307/2023.023 . | |
18 | JIN B Y, ZHANG C J, ZHONG Z Y, et al. A novel degradable PCL/PLLA strapping band for internal fixation of fracture[J]. J Mater Sci Mater Med, 2023, 34(11):57. DOI: 10.1007/s10856-023-06759-7 . |
19 | 肖浦豪, 张波, 陈永昌. 基因编辑猴模型及其在基因治疗研究中的应用前景[J]. 生命科学, 2020, 32(7):669-675. DOI: 10.13376/j.cbls/2020084 . |
XIAO P H, ZHANG B, CHEN Y C. Gene editing monkey model and its application prospect in gene therapy research[J]. Chin Bull Life Sci, 2020, 32(7):669-675. DOI: 10.13376/j.cbls/2020084 . | |
20 | FARRIS M, MCTYRE E R, OKOUKONI C, et al. Cortical thinning and structural bone changes in non-human Primates after single-fraction whole-chest irradiation[J]. Radiat Res, 2018, 190(1):63-71. DOI: 10.1667/RR15007.1 . |
21 | 贾鹏, 卢锋成, 赵志辉, 等. 可吸收锁钉鞘预防带锁髓内钉应力遮挡的动物实验研究[J]. 新乡医学院学报, 2020, 37(2):120-124. DOI: 10.7683/xxyxyxb.2020.02.005 . |
JIA P, LU F C, ZHAO Z H, et al. Experimental study of absorbable nail sheath preventing stress shielding with interlocking intramedullary nail[J]. J Xinxiang Med Univ, 2020, 37(2):120-124. DOI: 10.7683/xxyxyxb.2020.02.005 . | |
22 | 杨卫强, 丁童, 杨卫可, 等. 组合式可变应力接骨板内固定干预山羊股骨骨折断端的骨组织细胞功能及骨密度变化[J]. 中国组织工程研究, 2021, 25(6):890-894. DOI: 10.3969/j.issn.2095-4344.2393 . |
YANG W Q, DING T, YANG W K, et al. Combined variable stress plate internal fixation affects changes of bone histiocyte function and bone mineral density at the fractured end of goat femur[J]. Chin J Tissue Eng Res, 2021, 25(6):890-894. DOI: 10.3969/j.issn.2095-4344.2393 . | |
23 | BERGEN D J M, KAGUE E, HAMMOND C L. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds[J]. Front Endocrinol, 2019, 10:6. DOI: 10.3389/fendo.2019.00006 . |
24 | 陈章美. 中华跌打丸促进骨折愈合作用及机制研究[D]. 南宁: 广西中医药大学, 2021. DOI: 10.27879/d.cnki.ggxzy.2021.000305 . |
CHENG Z M. Study on the effect and mechanism of Zhonghua dieda pill on promoting fracture healing[D]. Nanning: Chinese Master's Theses Full-text Database, 2021. DOI: 10.27879/d.cnki.ggxzy.2021.000305 . | |
25 | 王岩, 马剑雄, 董本超, 等. 创伤性股骨头坏死动物模型的研究进展[J]. 中国中西医结合外科杂志, 2022, 28(5):749-752. DOI: 10.3969/j.issn.1007-6948.2022.00.031 . |
WANG Y, MA J X, DONG B C, et al. Research progress of animal model of traumatic femoral head necrosis[J]. Chin J Surg Integr Tradit West Med, 2022, 28(5):749-752. DOI: 10.3969/j.issn.1007-6948.2022.00.031 . | |
26 | ANUP A, DIETERICH S, OREFFO R O C, et al. Embracing ethical research: implementing the 3R principles into fracture healing research for sustainable scientific progress[J]. J Orthop Res, 2024, 42(3):568-577. DOI: 10.1002/jor.25741 . |
27 | 吕利军, 彭伟, 李闯兵, 等. 髓内固定构建大鼠股骨骨不连模型[J]. 中国组织工程研究, 2024, 28(26):4189-4193. DOI: 10.12307/2024.435 . |
LYU L J, PENG W, LI C B, et al. Establishment of a rat femoral nonunion model by intramedullary fixation[J]. Chin J Tissue Eng Res, 2024, 28(26):4189-4193. DOI: 10.12307/2024.435 . | |
28 | 魏彬, 黄景辉, 马腾, 等. 不同剂量rhBMP2修复兔桡骨骨缺损的比较[J]. 中国矫形外科杂志, 2023, 31(11):1018-1023. DOI: 10.3977/j.issn.1005-8478.2023.11.11 . |
WEI B, HUANG J H, MA T, et al. Comparison of different doses of rhBMP2 used for repairing radial bone defect in rabbit[J]. Orthop J China, 2023, 31(11):1018-1023. DOI: 10.3977/j.issn.1005-8478.2023.11.11 . | |
29 | 卢蒙恩, 崔荞荞, 郭晓霞, 等. 艾司氯胺酮对大鼠骨折后骨生长相关因子的影响[J]. 河北医药, 2023, 45(18):2770-2773. DOI: 10.3969/j.issn.1002-7386.2023.18.010 . |
LU M E, CUI Q Q, GUO X X, et al. Effect of esketamine on bone growth-related factors after fracturing in rats[J]. Hebei Med J, 2023, 45(18):2770-2773. DOI: 10.3969/j.issn.1002-7386.2023.18.010 . | |
30 | 吴东明, 李木英, 陈桂鹏, 等. 湛江驳骨消在骨折模型鼠骨折愈合过程中的作用研究[J]. 中国医药科学, 2020, 10(17):39-42, 59. DOI: 10.3969/j.issn.2095-0616.2020.17.012 . |
WU D M, LI M Y, CHEN G P, et al. A study of the effect of Zhanjiang Boguxiao in the fracture healing process of fracture model rats[J]. China Med Pharm, 2020, 10(17):39-42, 59. DOI: 10.3969/j.issn.2095-0616.2020.17.012 . | |
31 | 郭晓光, 张磊, 关钛元, 等. 少阳生骨方修复胫骨骨折模型大鼠转化生长因子β1的表达[J]. 中国组织工程研究, 2018, 22(20):3178-3183. DOI: 10.3969/j.issn.2095-4344.0236 . |
GUO X G, ZHANG L, GUAN T Y, et al. Shaoyang Shengguformula for fracture healing in rat models and the expression change of transforming growth factor beta 1 after repair[J]. Chin J Tissue Eng Res, 2018, 22(20):3178-3183. DOI: 10.3969/j.issn.2095-4344.0236 . | |
32 | 唐晓旭, 张志乾, 李福琴, 等. ADAM10在骨髓间充质干细胞成骨分化及胫骨骨折愈合中的作用及可能机制[J]. 中国比较医学杂志, 2023, 33(10):23-31. DOI: 10.3969/j.issn.1671-7856.2023.10.004 . |
TANG X X, ZHANG Z Q, LI F Q, et al. Role and possible mechanism of ADAM10 in osteogenic differentiation of bone marrow mesenchymal stem cells and tibial fracture union[J]. Chin J Comp Med, 2023, 33(10):23-31. DOI: 10.3969/j.issn.1671-7856.2023.10.004 . | |
33 | ZHOU Q K, LUO D Q, LI T, et al. Bone fracture in a rat femoral fracture model is associated with the activation of autophagy[J]. Exp Ther Med, 2015, 10(5):1675-1680. DOI: 10.3892/etm.2015.2752 . |
34 | 王钟庆, 熊贤梅, 张严, 等. 三七总皂苷上调浓缩生长因子释放促进大鼠骨折愈合[J]. 中国组织工程研究, 2024, 28(11):1678-1683. DOI: 10.12307/2024.272 . |
WANG Z Q, XIONG X M, ZHANG Y, et al. Panax notoginseng saponin promotes fracture healing by upregulating concentrated growth factors in rats[J]. Chin J Tissue Eng Res, 2024, 28(11):1678-1683. DOI: 10.12307/2024.272 . | |
35 | STARLINGER J, SARAHRUDI K, KECHT M, et al. The influence of M-CSF on fracture healing in a mouse model[J]. Sci Rep, 2021, 11(1):22326. DOI: 10.1038/s41598-021-01673-w . |
36 | BERNHARDSSON M, ASPENBERG P. Osteoblast precursors and inflammatory cells arrive simultaneously to sites of a trabecular-bone injury[J]. Acta Orthop, 2018, 89(4):457-461. DOI: 10.1080/17453674.2018.1481682 . |
37 | 刘玉召, 罗清龙, 程志刚, 等. SD大鼠两种胫骨骨缺损模型构建的差异[J]. 贵阳中医学院学报, 2017, 39(5):19-22. DOI: 10.16588/j.cnki.issn1002-1108.2017.05.006 . |
LIU Y Z, LUO Q L, CHENG Z G, et al. The difference in constructing tibial defect models with two methods in SD rats[J]. J Guiyang Univ Chin Med, 2017, 39(5):19-22. DOI: 10.16588/j.cnki.issn1002-1108.2017.05.006 . | |
38 | ZHOU L, HU C J, CHEN Y J, et al. Investigations of silk fiber/calcium phosphate cement biocomposite for radial bone defect repair in rabbits[J]. J Orthop Surg Res, 2017, 12(1):32. DOI: 10.1186/s13018-017-0529-8 . |
39 | SATO Y, TAGAMI T, AKIMOTO T, et al. Development and validation of a novel overhead method for anteroposterior radiographs of fractured rat femurs[J]. Sci Rep, 2024, 14(1):5536. DOI: 10.1038/s41598-024-56238-4 . |
40 | HAMADA S, YU M R, SHIWAKU Y, et al. Octacalcium phosphate/gelatin composite (OCP/gel) enhances bone repair in a critical-sized transcortical femoral defect rat model[J]. Clin Orthop Relat Res, 2022, 480(10):2043-2055. DOI: 10.1097/CORR.0000000000002257 . |
41 | GIACOMO A D, MORGAN E F, GERSTENFELD L C. Generation of Closed Transverse Fractures in Small Animals[M]//HILTON M J. Methods in molecular biology (Clifton, N.J.) Berlin: Springer, 2021: 63-73. DOI: 10.1007/978-1-0716-1028-2_4 . |
42 | LI Z Z, GU Y T, LIN Z W, et al. Cordycepin promotes osteogenesis of bone marrow-derived mesenchymal stem cells and accelerates fracture healing via hypoxia in a rat model of closed femur fracture[J]. Biomedecine Pharmacother, 2020, 125:109991. DOI: 10.1016/j.biopha.2020. 109991 . |
43 | HU Y P, LIAN Q Q, CAO F Y, et al. Estrogen deficiency impedes fracture healing despite eliminating the excessive absorption of the posterior callus in a semi-fixed distal tibial fracture mouse model[J]. BMC Musculoskelet Disord, 2023, 24(1):803. DOI: 10.1186/s12891-023-06929-2 . |
44 | KNOTTS T, MEASE K, SANGAMESWARAN L, et al. Pharmacokinetics and local tissue response to local instillation of vocacapsaicin, a novel capsaicin prodrug, in rat and rabbit osteotomy models[J]. J Orthop Res, 2022, 40(10):2281-2293. DOI: 10.1002/jor.25271 . |
45 | ARYAL A, PAGAKU P K, DEY D, et al. Protocol for developing a femur osteotomy model in wistar albino rats[J]. JoVE, 2022(186): e63712. DOI: 10.3791/63712 . |
46 | MENENDI U, NUSRAN G, KAYMAZ B, et al. The effects of carbogen and hyperbaric oxygen treatment on fracture healing in rats[J]. Ulus Travma Acil Cerrahi Derg, 2022, 28(4):411-417. DOI: 10.14744/tjtes.2021.02575 . |
47 | 姚玉英, 张宏, 范雅丽, 等. 局部微电流刺激对兔胫骨骨缺损部位降钙素基因相关肽表达的影响[J]. 中国中医骨伤科杂志, 2021, 29(4):20-23. |
YAO Y Y, ZHANG H, FAN Y L, et al. Effect of local microcurrent stimulation on the expression of calcitonin gene-related peptide in tibial defect of rabbits[J]. Chin J Tradit Med Traumatol Orthop, 2021, 29(4):20-23. | |
48 | LI Z J, Helms J A. Drill hole models to investigate bone repair[M/OL] // VAN WIJNEN A J, GANSHINA M S. Osteoporosis and osteoarthritis. Methods in molecular biology 2221 (Springer Protocols). 2nd ed. New York: Humana Press, 2021: 193-204. . |
49 | ROBERTS J L, KINTER C W, DRISSI H. Generation and experimental outcomes of closed femoral fracture in mice[M/OL] // VAN WIJNEN A J, GANSHINA M S. Osteoporosis and osteoarthritis. Methods in molecular biology 2221 (Springer Protocols). 2nd ed. New York: Humana Press, 2021: 205-222. . |
50 | 米萌, 周力, 金红婷, 等. 髓内固定的小鼠胫骨开放骨折模型与股骨闭合骨折模型的比较研究[J]. 北京生物医学工程, 2017, 36(4):383-389, 439. DOI: 10.3969/j.issn.1002-3208.2017.04.010 . |
MI M, ZHOU L, JIN H T, et al. Comparative study between open tibial fracture mouse model and closed femoral fracture mouse model with intramedullary fixation[J]. Beijing Biomed Eng, 2017, 36(4):383-389, 439. DOI: 10.3969/j.issn.1002-3208.2017.04.010 . | |
51 | 佘昶, 董启榕, 周晓中. 大鼠股骨开放截骨模型与闭合骨折模型制作的比较[J]. 中国组织工程研究与临床康复, 2008, 12(46):9071-9075. DOI: 10.3321/j.issn:1673-8225.2008.46.020 . |
SHE C, DONG Q R, ZHOU X Z. Comparison of open osteotomy model and closed fracture model in the rat femur[J]. J Clin Rehabil Tissue Eng Res, 2008, 12(46):9071-9075. DOI: 10.3321/j.issn:1673-8225.2008.46.020 . | |
52 | QU X H, YANG H T, JIA B, et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J]. Bioact Mater, 2021, 6(12):4607-4624. DOI: 10.1016/j.bioactmat.2021.05.023 . |
[1] | XIAO Wenxian, LÜ Longbao. Research Progress on Human Ovarian Aging Using Non-Human Primates as Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 47-54. |
[2] | LIU Rongle, CHENG Hao, SHANG Fusheng, CHANG Shufu, XU Ping. Study on Cardiac Aging Phenotypes of SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 13-20. |
[3] | SHEN Huangyi, HUANG Yufei, YANG Yunpeng. Research Progress on Characteristics of Gut Microbiota and Its Gender Differences in Experimental Animals [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-11. |
[4] | ZHANG Qian, DENG Qingxiu, CAI Lin. An review: Occupational Health Management of University Laboratory Animal Workers [J]. Laboratory Animal and Comparative Medicine, 2025, (): 1-8. |
[5] | LIU Yishu, CAI Liping. Advances and Challenges of Using Experimental Pigs in Da Vinci Surgical Robot Training [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 667-674. |
[6] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[7] | LIU Siyu, LAI Yuezhao, GUO Wenting, CHEN Xuejin. Advances in Nucleic Acid Drugs and Gene Therapies based on Animal Models of Duchenne Muscular Dystrophy [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 613-625. |
[8] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[9] | Editorial Board of Laboratory Animal and Comparative Medicine . Guideline Checklist for Publishing Research Papers on Animal Experimentation and Comparative Medicine in China (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 577-582. |
[10] | YANG Jin, YU Shiya, LIN Nan, FANG Yongchao, ZHAO Hu, QIU Jinwei, LIN Hongming, CHEN Huiyan, WANG Yu, WU Weihang. Effect of Modified Duodenal Exclusion Surgery on Glucose Metabolism in Rats with Type 2 Diabetes Mellitus [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 523-530. |
[11] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[12] | ZHU Chan, ZHANG Dongliang, ZHAO Deli, SHI Xueqin, QIAN Lei, ZHANG Xuan, JIN Yan, DUAN Wei, QI Ruocheng, LIU Chaohua, YANG Xuekang, HAN Juntao, PAN Dengke. Perioperative Animal Care for Xenotransplantation from Genetically Edited Pigs to Monkeys [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 495-501. |
[13] | ZHANG Zishan, WU Ying, LI Feiyang, DU Xiaoyan. Research Advances in Mongolian Gerbil Models of Cerebral Ischemia and Auditory Impairment [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 419-427. |
[14] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[15] | XIAO Pan, WANG Hongyi, LU Lu, ZHANG Mei, CHEN Keming, SHEN Dongshuai, NIU Tingxian. Screening of Hypoxia-Sensitive and Hypoxia-Tolerant Wistar Rats and Preliminary Exploration of Hypoxia Sensitivity in Their G1 Generation [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 374-383. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||