Laboratory Animal and Comparative Medicine ›› 2017, Vol. 37 ›› Issue (6): 491-496.DOI: 10.3969/j.issn.1674-5817.2017.06.015
MA Deng-lei, ZHANG Lan
Received:
2017-08-14
Online:
2017-12-25
Published:
2017-12-25
CLC Number:
MA Deng-lei, ZHANG Lan. P301S Mutant Tau Transgenic Mouse and Their Applications[J]. Laboratory Animal and Comparative Medicine, 2017, 37(6): 491-496.
[1] Nagy Z, Esiri MM, Jobst KA, et al.Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria[J]. Dementia, 1995, 6(1):21-31. [2] Murray ME, Lowe VJ, Graff-Radford NR, et al.Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum[J]. Brain, 2015, 138(Pt 5):1370-1381. [3] Gong CX, Grundke-Iqbal I, Iqbal K.Targeting tau protein in Alzheimer’s disease[J]. Drugs Aging, 2010, 27(5):351-365. [4] Dujardin S, Colin M, Buée L.Invited review: Animal models of tauopathies and their implications for research/translation into the clinic[J]. Neuropathol Appl Neurobiol, 2015, 41(1):59-80. [5] Noble W, Hanger DP, Gallo JM.Transgenic mouse models of tauopathy in drug discovery[J]. CNS Neurol Disord Drug Targets, 2010, 9(4):403-428. [6] Weingarten MD, Lockwood AH, Hwo SY, et al.A protein factor essential for microtubule assembly[J]. Proc Natl Acad Sci U S A, 1975, 72(5):1858-1862. [7] Dixit R, Ross JL, Goldman YE, et al.Differential regulation of dynein and kinesin motor proteins by tau[J]. Science, 2008, 319(5866):1086-1089. [8] Liu CW, Lee G, Jay DG.Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons[J]. Cell Motil Cytoskeleton, 1999, 43(3):232-242. [9] Iqbal K, Liu F, Gong CX, et al.Mechanisms of tau-induced neurodegeneration[J]. Acta Neuropathol, 2009, 118(1):53-69. [10] Iqbal K, Liu F, Gong CX.Tau and neurodegenerative disease: the story so far[J]. Nat Rev Neurol, 2016, 12(1):15-27. [11] Li B, Chohan MO, Grundke-Iqbal I, et al.Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau[J]. Acta Neuropathol, 2007, 113(5):501-511. [12] Hutton M, Lendon CL, Rizzu P, et al.Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17[J]. Nature, 1998, 393(6686):702-705. [13] Stenson PD, Mort M, Ball EV, et al.The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine[J]. Hum Genet, 2014, 133(1):1-9. [14] Hong M, Zhukareva V, Vogelsberg-Ragaglia V, et al.Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17[J]. Science, 1998, 282(5395): 1914-1917. [15] Chang E, Kim S, Yin H, et al.Pathogenicmissense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps[J]. J Neurochem, 2008, 107(4):1113-1123. [16] Alonso AD, Mederlyova A, Novak M, et al.Promotion of hyperphosphorylation by frontotemporal dementia tau mutations[J]. J Biol Chem, 2004, 279(33):34873-34881. [17] Ludvigson AE, Luebke JI, Lewis J, et al.Structural abnormalities in the cortex of the rTg4510 mouse model of tauopathy: a light and electron microscopy study[J]. Brain Struct Funct, 2011, 216(1):31-42. [18] Yoshiyama Y, Higuchi M, Zhang B, et al.Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model[J]. Neuron, 2007, 53(3):337-351. [19] Yamada K, Cirrito JR, Stewart FR, et al.In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice[J]. J Neurosci, 2011, 31(37):13110-13117. [20] López-González I, Aso E, Carmona M, et al.Neuroinfla-mmatory gene regulation, mitochondrial function, oxidative stress, and brain lipid modifications with disease progression in tau P301S transgenic mice as a model of frontotemporal lobar degeneration-tau[J]. J Neuropathol Exp Neurol, 2015, 74(10):975-999. [21] Dumont M, Stack C, Elipenahli C, et al.Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice[J]. FASEB J, 2011, 25(11):4063-4072. [22] Boluda S, Iba M, Zhang B, et al.Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains[J]. Acta Neuropathol, 2015, 129(2):221-237. [23] Crescenzi R, DeBrosse C, Nanga RP, et al. In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy[J]. Neuroimage, 2014, 101:185-192. [24] Rossi G, Conconi D, Panzeri E, et al.Mutations in MAPT give rise to aneuploidy in animal models of tauopathy[J]. Neurogenetics, 2014, 15(1):31-40. [25] Takeuchi H, Iba M, Inoue H, et al.P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating[J]. PLoS One, 2011, 6(6):e21050. [26] Holmes BB, Furman JL, Mahan TE, et al.Proteopathic tau seeding predicts tauopathy in vivo[J]. Proc Natl Acad Sci USA, 2014, 111(41):E4376-4385. [27] Iba M, Guo JL, McBride JD, et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy[J]. J Neurosci, 2013, 33(3):1024-1037. [28] Kaufman SK, Sanders DW, Thomas TL, et al.Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo[J]. Neuron, 2016, 92(4):796-812. [29] Cohen TJ, Guo JL, Hurtado DE, et al.The acetylation of tau inhibits its function and promotes pathological tau aggregation[J]. Nat Commun, 2011, 2:252. [30] Min SW, Cho SH, Zhou Y, et al.Acetylation of tau inhibits its degradation and contributes to tauopathy[J]. Neuron, 2010, 67(6):953-966. [31] Maeda J, Zhang MR, Okauchi T, et al.In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders[J]. J Neurosci, 2011, 31(12):4720-4730. [32] Ji B, Maeda J, Sawada M, et al.Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies[J]. J Neurosci, 2008, 28(47):12255-12267. [33] Yoshiyama Y, Kojima A, Ishikawa C, et al.Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model[J]. J Alzheimers Dis, 2010, 22(1):295-306. [34] Yoshiyama Y, Kojima A, Itoh K, et al.Anticholinergics boost the pathological process of neurodegeneration with increased inflammation in a tauopathy mouse model[J]. Neurobiol Dis, 2012, 45(1):329-336. [35] Yanamandra K, Kfoury N, Jiang H, et al.Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo[J]. Neuron, 2013, 80(2):402-414. [36] Yanamandra K, Jiang H, Mahan TE, et al.Anti-tau antibody reduces insoluble tau and decreases brain atrophy[J]. Ann Clin Transl Neurol, 2015, 2(3):278-288. [37] Sankaranarayanan S, Barten DM, Vana L, et al.Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models[J]. PLoS One, 2015, 10(5):e0125614. [38] Richter M, Mewes A, Fritsch M, et al.Doubly phosphorylated peptide vaccines to protect transgenic P301S mice against Alzheimer's disease like tau aggregation[J]. Vaccines (Basel),2014, 2(3):601-623. [39] Dumont M, Stack C, Elipenahli C, et al.Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice[J]. Hum Mol Genet, 2012, 21(23):5091-5105. [40] Wagner J, Krauss S, Shi S, et al.Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies[J]. Acta Neuropathol, 2015, 130(5):619-631. [41] Caccamo A, Magrì A, Medina DX, et al.mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies[J]. Aging Cell, 2013, 12(3):370-380. [42] Jiang T, Yu JT, Zhu XC, et al.Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosp-horylation and autophagic clearance[J]. Neuropharmacology, 2014, 85:121-130. [43] Wang H, Wang R, Carrera I, et al.TFEB overexpression in the P301S model of tauopathy mitigates increased PHF1 levels and lipofuscin puncta and rescues memory deficits[J]. eNeuro, 2016, 3(2):1-18. [44] DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy[J]. Sci Transl Med, 2017, 9(374):1-14. [45] Brunden KR, Zhang B, Carroll J, et al.Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy[J]. J Neurosci, 2010, 30(41):13861-13866. [46] Zhang B, Carroll J, Trojanowski JQ, et al.The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice[J]. J Neurosci, 2012, 32(11):3601-3611. [47] Musiek ES, Xiong DD, Patel T, et al.Nmnat1 protects neuronal function without altering phospho-tau pathology in a mouse model of tauopathy[J]. Ann Clin Transl Neurol, 2016, 3(6):434-442. [48] Jiang T, Tan L, Zhu XC, et al.Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice[J]. Neurobiol Aging, 2015, 36(12):3176-3186. [49] Jiang T, Zhang YD, Chen Q, et al.TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice[J]. Neuropharmacology, 2016, 105:196-206. [50] Elipenahli C, Stack C, Jainuddin S, et al.Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice[J]. J Alzheimers Dis, 2012, 28(1):173-182. [51] Stack C, Jainuddin S, Elipenahli C, et al.Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity[J]. Hum Mol Genet, 2014, 23(14):3716-3732. [52] Ohia-Nwoko O, Montazari S, Lau YS, et al.Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice[J]. Mol Neurodegener, 2014, 9:54. [53] Koga S, Kojima A, Ishikawa C, et al.Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression[J]. Neurobiol Dis, 2014, 71:180-192. [54] Zhang Z, Song M, Liu X, et al.Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease[J]. Nat Med, 2014, 20(11):1254-1262. [55] Barini E, Antico O, Zhao Y, et al.Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy[J]. Mol Neurodegener, 2016, 11:16. [56] Allen B,Ingram E, Takao M, et al.Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein[J]. J Neurosci, 2002, 22(21): 9340-9351. [57] Bellucci A, Westwood AJ, Ingram E, et al.Induction of inflammatory mediators andmicroglial activation in mice transgenic for mutant human P301Stau protein[J]. Am J Pathol, 2004, 165(5):1643-1652. [58] Scattoni ML, Gasparini L, Alleva E, et al.Early behavioural markers of disease in P301S tau transgenic mice[J]. Behav Brain Res, 2010, 208(1):250-257. [59] Rosenmann H, Grigoriadis N, Eldar-Levy H, et al.A noveltransgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics[J]. Exp Neurol, 2008, 212(1):71-84. |
[1] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[2] | GU Xiao-wen, SUN Rei-lin, FEI Jian. Construction of Afp-cre-lacZ Transgenic Mouse Model [J]. Laboratory Animal and Comparative Medicine, 2017, 37(2): 89-93. |
[3] | LIU Lei, WANG Bao-zhu, LAO Quan-heng, LIU Min, XUE Zheng-feng, JI Ming-chun. Preliminary Study on Development of bcr Promotor Driven EGFP Expressing Transgenic Mice [J]. Laboratory Animal and Comparative Medicine, 2015, 35(2): 149-154. |
[4] | CHI Jun, KUANG Ying, SHI Ji-jing, GONG Hui, MAO Ji-fang, FEI Jian, WANG Zhu-gang. Effects of Foreign DNA Length on Integration Efficiency in Preparation of Transgenic Mouse [J]. Laboratory Animal and Comparative Medicine, 2012, 32(2): 116-119. |
[5] | CAO Wen-jun1, WANG Li2, MENG Xiu-qin2, CHEN Guo-xiang2,GU Rong-quan2,CHENG Zhu2, CHENG Sai-juan2. Screening of the PML-RARA Transgenic Mice by Using Phenotypic Analysis [J]. , 2002, 22(1): 6-9. |
[6] | XIE Jian-yun,SHAO Wei-juan ,GU Wei-zhong,WANG Xiao-dong ,GAO Cheng. Genetic Monitoring on Three Strains of Transgenic mouse [J]. , 2001, 21(3): 147-149. |
[7] | CHEN Jian-Quan, LUO Jin-Ping, ZHOU Ru-Jiang, CHENG Guo-Xiang. Study on Pregnancy of Recipients and Survival Rhte of Founder Mice in Preparation of Transgenic Mice [J]. , 1999, 19(2): 90-92. |
[8] | ZHANG Yi-Jun, LI Zhuo-Liang, WANG Bao-Kui, CHEN Wen-Yin, ZHANG Gu-Sheng. Effects of Thymosin on Expression of HBV DNA in HBV Transgenic Mice [J]. , 1999, 19(2): 93-95. |
[9] | WAN Shu-Guang-1, LI Yan-Feng-1, ZHANG Ping-Ping-1, WAN Da-Fang-1, QIAN Geng-Sun-1, GU Jian-Ren-1, CHENG Guo-Xiang-2, XU Shao-Fu-2. Histopathological Observation and DNA Image Analysis on Livers of HBV Transgenic Mice [J]. , 1995, 15(4): 206-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||