Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (5): 542-550.DOI: 10.12300/j.issn.1674-5817.2025.045
• Animal Models of Human Diseases • Previous Articles Next Articles
GAO Chaoqi1,2(
), ZHU Zhibo1,2, SUN Xiandong1,2(
)(
)
Received:2025-03-24
Revised:2025-06-06
Online:2025-10-25
Published:2025-10-23
Contact:
SUN Xiandong
CLC Number:
GAO Chaoqi,ZHU Zhibo,SUN Xiandong. Application Progress and Classification Analysis of Rat Vascular Remodeling Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 542-550. DOI: 10.12300/j.issn.1674-5817.2025.045.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2025.045
实验动物 Laboratory animals | 特点 Characteristics | 局限性 Limitations |
|---|---|---|
小鼠 Mice | 体型小;繁殖快;成本低;基因背景明确 | 生理结构与人类不同;寿命短;稳定构建手术模型难度大;血液样本少 |
大鼠 Rats | 便于手术性操作;药物代谢接近人类;器官系统与人类相似;认知和社会行为多样 | 基因编辑难度大 |
兔 Rabbits | 可长期生理监测;免疫系统与人相似;眼睛结构与人接近;皮肤敏感性与人相近 | 繁殖周期长;成本高;个体差异大;易受到环境影响 |
猪 Pigs | 解剖系统与人类相似;寿命长 | 饲养成本高;公众接受度较低;存在伦理问题 |
犬 Dogs | 心血管、消化系统与人类相似;适合长期及慢性病的研究 | 饲养成本高;伦理问题敏感 |
非人灵长类 Non-human primates | 高度拟人性 | 饲养和管理复杂;价格昂贵;伦理问题复杂;个体差异显著 |
Table 1 Characteristics and limitations of commonly used laboratory animals in vascular remodeling research
实验动物 Laboratory animals | 特点 Characteristics | 局限性 Limitations |
|---|---|---|
小鼠 Mice | 体型小;繁殖快;成本低;基因背景明确 | 生理结构与人类不同;寿命短;稳定构建手术模型难度大;血液样本少 |
大鼠 Rats | 便于手术性操作;药物代谢接近人类;器官系统与人类相似;认知和社会行为多样 | 基因编辑难度大 |
兔 Rabbits | 可长期生理监测;免疫系统与人相似;眼睛结构与人接近;皮肤敏感性与人相近 | 繁殖周期长;成本高;个体差异大;易受到环境影响 |
猪 Pigs | 解剖系统与人类相似;寿命长 | 饲养成本高;公众接受度较低;存在伦理问题 |
犬 Dogs | 心血管、消化系统与人类相似;适合长期及慢性病的研究 | 饲养成本高;伦理问题敏感 |
非人灵长类 Non-human primates | 高度拟人性 | 饲养和管理复杂;价格昂贵;伦理问题复杂;个体差异显著 |
成分 Components | 机制 Mechanisms | 目的 Objectives |
|---|---|---|
胆固醇 Cholesterol | 激活炎症反应;加重氧化应激;促进管壁硬化 | 提供胆固醇来源;影响机体血脂水平 |
丙基硫氧嘧啶 Propylthiouracil | 抑制甲状腺功能 | 降低机体胆固醇代谢 |
胆酸钠 Sodium cholate | 提高胆固醇吸收率 | 增加机体胆固醇含量 |
蔗糖 Sucrose | 转化成脂肪 | 提供脂肪来源;改善整体味道;增强大鼠食欲 |
猪油 Lard | — | 提供脂肪来源;刺激大鼠食欲 |
普通饲料 Ordinary feed | — | 提供营养;平衡膳食 |
Table 2 Mechanisms and objectives of various components in high-fat diet for vascular remodeling modeling
成分 Components | 机制 Mechanisms | 目的 Objectives |
|---|---|---|
胆固醇 Cholesterol | 激活炎症反应;加重氧化应激;促进管壁硬化 | 提供胆固醇来源;影响机体血脂水平 |
丙基硫氧嘧啶 Propylthiouracil | 抑制甲状腺功能 | 降低机体胆固醇代谢 |
胆酸钠 Sodium cholate | 提高胆固醇吸收率 | 增加机体胆固醇含量 |
蔗糖 Sucrose | 转化成脂肪 | 提供脂肪来源;改善整体味道;增强大鼠食欲 |
猪油 Lard | — | 提供脂肪来源;刺激大鼠食欲 |
普通饲料 Ordinary feed | — | 提供营养;平衡膳食 |
| [1] | YE C, ZHENG F, WU N, et al. Extracellular vesicles in vascular remodeling[J]. Acta Pharmacol Sin, 2022, 43(9):2191-2201. DOI:10.1038/s41401-021-00846-7 . |
| [2] | LIU H, SUN M Y, WU N, et al. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases[J]. Immun Inflamm Dis, 2023, 11(11): e1060. DOI:10.1002/iid3.1060 . |
| [3] | TOTOŃ-ŻURAŃSKA J, MIKOLAJCZYK T P, SAJU B, et al. Vascular remodelling in cardiovascular diseases: hyperten-sion, oxidation, and inflammation[J]. Clin Sci, 2024, 138(13):817-850. DOI:10.1042/CS20220797 . |
| [4] | 周清辰, 刘坤, 韩数, 等. 动物实验在针灸转化医学中的作用[J]. 中国针灸, 2022, 42(12):1339-1343. DOI:10.13703/j.0255-2930.20220803-k0003 . |
| ZHOU Q C, LIU K, HAN S, et al. Role of animal experiment in acupuncture translational medicine[J]. Zhongguo Zhen Jiu, 2022, 42(12):1339-1343. DOI:10.13703/j.0255-2930.20220803-k0003 . | |
| [5] | SMITH J R, BOLTON E R, DWINELL M R. The rat: a model used in biomedical research[J]. Methods Mol Biol, 2019, 2018:1-41. DOI:10.1007/978-1-4939-9581-3_1 . |
| [6] | PALLOCCA G, LEIST M. On the usefulness of animals as a model system (part Ⅱ): Considering benefits within distinct use domains[J]. ALTEX, 2022, 39(3):531-539. DOI:10.14573/altex.2207111 . |
| [7] | MITRA A, DAS A, GHOSH S, et al. Metformin instigates cellular autophagy to ameliorate high-fat diet-induced pancreatic inflammation and fibrosis/EMT in mice[J]. Biochim Biophys Acta(BBA) Mol Basis Dis, 2024, 1870(7):167313. DOI:10.1016/j.bbadis.2024.167313 . |
| [8] | RAI V. High-fat diet, epigenetics, and atherosclerosis: a narrative review[J]. Nutrients, 2024, 17(1):127. DOI:10.3390/nu17010127 . |
| [9] | 王淑琪, 李慧, 杨晓强, 等. 建立大鼠动脉粥样硬化模型的研究进展[J]. 中国医药导报, 2020, 17(12):45-48, 68. DOI: 10.20047/j.issn1673-7210.2020.12.011 . |
| WANG S Q, LI H, YANG X Q, et al. Progress in the establishment of atherosclerosis models in rats[J]. China Med Her, 2020, 17(12):45-48, 68. DOI: 10.20047/j.issn1673-7210.2020.12.011 . | |
| [10] | ADACHI Y, UEDA K, NOMURA S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling[J]. Nat Commun, 2022, 13(1):5117. DOI:10.1038/s41467-022-32658-6 . |
| [11] | FRAZIER K, KAMBAL A, ZALE E A, et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction[J]. Cell Host Microbe, 2022, 30(6):809-823.e6. DOI:10.1016/j.chom.2022.03.030 . |
| [12] | DUAN X H, ZHANG L, LIAO Y, et al. Semaglutide alleviates gut microbiota dysbiosis induced by a high-fat diet[J]. Eur J Pharmacol, 2024, 969:176440. DOI:10.1016/j.ejphar.2024. 176440 . |
| [13] | LI X, HUANG G W, ZHANG Y N, et al. Succinate signaling attenuates high-fat diet-induced metabolic disturbance and intestinal barrier dysfunction[J]. Pharmacol Res, 2023, 194:106865. DOI:10.1016/j.phrs.2023.106865 . |
| [14] | WANG Y, BAI M S, PENG Q F, et al. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease[J]. Eur J Med Res, 2024, 29(1):614. DOI:10.1186/s40001-024-02224-5 . |
| [15] | GAN G W, LIN S H, LUO Y F, et al. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE-/- mice on a high-fat diet[J]. Int J Oral Sci, 2024, 16(1):39. DOI:10.1038/s41368-024-00301-3 . |
| [16] | LAVILLEGRAND J R, AL-RIFAI R, THIETART S, et al. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming[J]. Nature, 2024, 634(8033):447-456. DOI:10.1038/s41586-024-07693-6 . |
| [17] | HUMPHREY J D. Mechanisms of vascular remodeling in hypertension[J]. Am J Hypertens, 2021, 34(5):432-441. DOI:10.1093/ajh/hpaa195 . |
| [18] | DRENJANČEVIĆ-PERIĆ I, JELAKOVIĆ B, LOMBARD J H, et al. High-salt diet and hypertension: focus on the renin-angiotensin system[J]. Kidney Blood Press Res, 2011, 34(1):1-11. DOI:10.1159/000320387 . |
| [19] | ZHENG X Y, SEN J B, LI Z X, et al. High-salt diet augments systolic blood pressure and induces arterial dysfunction in outbred, genetically diverse mice[J]. Am J Physiol Heart Circ Physiol, 2023, 324(4): H473-H483. DOI:10.1152/ajpheart. 00415.2022 . |
| [20] | MIHALJ M, ŠTEFANIĆ M, MIHALJEVIĆ Z, et al. Early low-grade inflammation induced by high-salt diet in sprague dawley rats involves Th17/treg axis dysregulation, vascular wall remodeling, and a shift in the fatty acid profile[J]. Cell Physiol Biochem, 2024, 58(1):83-103. DOI:10.33594/000000684 . |
| [21] | LEE M K S, MURPHY A J. A high-salt diet promotes atherosclerosis by altering haematopoiesis[J]. Nat Rev Cardiol, 2023, 20(7):435-436. DOI:10.1038/s41569-023-00879-x . |
| [22] | GRIGOROVA Y N, JUHASZ O, ZERNETKINA V, et al. Aortic fibrosis, induced by high salt intake in the absence of hypertensive response, is reduced by a monoclonal antibody to marinobufagenin[J]. Am J Hypertens, 2016, 29(5):641-646. DOI:10.1093/ajh/hpv155 . |
| [23] | POWER G, PADILLA J. (Re)modeling high-salt diet-induced hypertension in mice[J]. Am J Physiol Heart Circ Physiol, 2023, 324(4): H470-H472. DOI:10.1152/ajpheart.00093.2023 . |
| [24] | YE C, ZHENG F, WU N, et al. Extracellular vesicles in vascular remodeling[J]. Acta Pharmacol Sin, 2022, 43(9):2191-2201. DOI:10.1038/s41401-021-00846-7 . |
| [25] | 曾昭华, Robert M.K.W.Lee, 罗碧辉, 等. 一种新的高盐致高血压动物模型及其血管重构改变[J]. 中国临床药理学与治疗学, 2005, 10(1):24-28. DOI: 10.3969/j.issn.1009-2501.2005.01.006 . |
| ZENG Z H, LEE R M K W, LUO B H, et al. Establishment of new hypertensive rat model induced by high salt diet and research on changes of arterial remodeling in model[J]. Chin J Clin Pharmacol Ther, 2005, 10(1):24-28. DOI: 10.3969/j.issn.1009-2501.2005.01.006 . | |
| [26] | GOHAR E Y, DE MIGUEL C, OBI I E, et al. Acclimation to a high-salt diet is sex dependent[J]. J Am Heart Assoc, 2022, 11(5): e020450. DOI:10.1161/JAHA.120.020450 . |
| [27] | SANZ R L, INSERRA F, GARCÍA MENÉNDEZ S, et al. Metabolic syndrome and cardiac remodeling due to mitochondrial oxidative stress involving gliflozins and sirtuins[J]. Curr Hypertens Rep, 2023, 25(6):91-106. DOI:10.1007/s11906-023-01240-w . |
| [28] | 张伟, 马骁, 程浩, 等. 高糖饮食与炎症性疾病研究进展. 四川大学学报(医学版), 2022, 53(3):538-542. DOI:10.12182/20220560103 . |
| ZHANG W, MA X, CHENG H, et al. Research progress in high-sugar diet and inflammatory diseases[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2022, 53(3):538-542. DOI:10.12182/20220560103 . | |
| [29] | TETTAMANZI F, BAGNARDI V, LOUCA P, et al. A high protein diet is more effective in improving insulin resistance and glycemic variability compared to a Mediterranean diet-a cross-over controlled inpatient dietary study[J]. Nutrients, 2021, 13(12):4380. DOI:10.3390/nu13124380 . |
| [30] | ZHANG W, ZHU M Z, LIU X C, et al. Edible bird's nest regulates glucose and lipid metabolic disorders via the gut-liver axis in obese mice[J]. Food Funct, 2024, 15(14):7577-7591. DOI:10.1039/d4fo00563e . |
| [31] | LI S Y, CHEN S, LU X T, et al. Serum trimethylamine-N-oxide is associated with incident type 2 diabetes in middle-aged and older adults: a prospective cohort study[J]. J Transl Med, 2022, 20(1):374. DOI:10.1186/s12967-022-03581-7 . |
| [32] | CHEN C Y, LEU H B, WANG S C, et al. Inhibition of trimethylamine N-oxide attenuates neointimal formation through reduction of inflammasome and oxidative stress in a mouse model of carotid artery ligation[J]. Antioxid Redox Signal, 2023, 38(1-3):215-233. DOI:10.1089/ars.2021.0115 . |
| [33] | HONG Q Q, QUE D D, ZHONG C B, et al. Trimethylamine-N-oxide (TMAO) promotes balloon injury-induced neointimal hyperplasia via upregulating Beclin1 and impairing autophagic flux[J]. Biomed Pharmacother, 2022, 155:113639. DOI:10.1016/j.biopha.2022.113639 . |
| [34] | FAN Z, YANG J, YANG C J, et al. MicroRNA-24 attenuates diabetic vascular remodeling by suppressing the NLRP3/caspase-1/IL-1β signaling pathway[J]. Int J Mol Med, 2022, 49(3):24. DOI: 10.3892/ijmm.2022.5079 . |
| [35] | PENG H Y, LV Y, LI C J, et al. Cathepsin S inhibition in dendritic cells prevents Th17 cell differentiation in perivascular adipose tissues following vascular injury in diabetic rats[J]. J Biochem Mol Toxicol, 2023, 37(9): e23419. DOI:10.1002/jbt.23419 . |
| [36] | BELLOMO R, ZARBOCK A, LANDONI G. Angiotensin Ⅱ[J]. Intensive Care Med, 2024, 50(2):279-282. DOI:10.1007/s00134-023-07290-7 . |
| [37] | CUI X R, WANG Y W, LU H L, et al. ZFP36 regulates vascular smooth muscle contraction and maintains blood pressure[J]. Adv Sci, 2025, 12(3): e2408811. DOI:10.1002/advs.202408811 . |
| [38] | BIWER L A, LU Q, IBARROLA J, et al. Smooth muscle mineralocorticoid receptor promotes hypertension after preeclampsia[J]. Circ Res, 2023, 132(6):674-689. DOI:10.1161/CIRCRESAHA.122.321228 . |
| [39] | AJOOLABADY A, PRATICO D, REN J. Angiotensin Ⅱ: Role in oxidative stress, endothelial dysfunction, and diseases[J]. Mol Cell Endocrinol, 2024, 592:112309. DOI:10.1016/j.mce. 2024.112309 . |
| [40] | ZHOU Q Y, PAN J Q, LIU W, et al. Angiotensin Ⅱ: a novel biomarker in vascular diseases[J]. Clin Chim Acta, 2025, 568:120154. DOI:10.1016/j.cca.2025.120154 . |
| [41] | XU C M, LIU C J, XIONG J H, et al. Cardiovascular aspects of the (pro)renin receptor: Function and significance[J]. FASEB J, 2022, 36(4): e22237. DOI:10.1096/fj.202101649RRR . |
| [42] | LI R L, ZHUO C L, YAN X, et al. Irisin attenuates vascular remodeling in hypertensive mice induced by Ang Ⅱ by suppressing Ca2+-dependent endoplasmic reticulum stress in VSMCs[J]. Int J Biol Sci, 2024, 20(2):680-700. DOI:10.7150/ijbs.84153 . |
| [43] | LIN W T, JIANG Y C, MEI Y L, et al. Endothelial deubiquinatase YOD1 mediates Ang Ⅱ-induced vascular endothelial-mesenchymal transition and remodeling by regulating β-catenin[J]. Acta Pharmacol Sin, 2024, 45(8):1618-1631. DOI:10.1038/s41401-024-01278-9 . |
| [44] | LU Z Y, QI J, YANG B, et al. Diallyl trisulfide suppresses angiotensin Ⅱ-induced vascular remodeling via inhibition of mitochondrial fission[J]. Cardiovasc Drugs Ther, 2020, 34(5):605-618. DOI:10.1007/s10557-020-07000-1 . |
| [45] | PELLICCIA F, ZIMARINO M, NICCOLI G, et al. In-stent restenosis after percutaneous coronary intervention: emerging knowledge on biological pathways[J]. Eur Heart J Open, 2023, 3(5): oead083. DOI:10.1093/ehjopen/oead083 . |
| [46] | CHAKRABORTY A, LI Y M, ZHANG C, et al. Epigenetic induction of smooth muscle cell phenotypic alterations in aortic aneurysms and dissections[J]. Circulation, 2023, 148(12):959-977. DOI:10.1161/CIRCULATIONAHA.123.063332 . |
| [47] | MATSUSHITA K, SATO C, BRUCKERT C, et al. Potential of dapagliflozin to prevent vascular remodeling in the rat carotid artery following balloon injury[J]. Atherosclerosis, 2024, 397:117595. DOI:10.1016/j.atherosclerosis.2024.117595 . |
| [48] | ZHAO H L, WU X J, YANG S M, et al. Formononetin alleviates the inflammatory response induced by carotid balloon injury in rats via the PP2A/MAPK axis[J]. Immunol Invest, 2025, 54(5):729-742. DOI:10.1080/08820139.2025.2470323 . |
| [49] | SOMARATHNA M, ISAYEVA-WALDROP T, AL-BALAS A, et al. A novel model of balloon angioplasty injury in rat arteriovenous fistula[J]. J Vasc Res, 2020, 57(4):223-235. DOI:10.1159/000507080 . |
| [50] | LI Z X, ZHANG Y Q, MA M R, et al. Targeted mitigation of neointimal hyperplasia via magnetic field-directed localization of superparamagnetic iron oxide nanoparticle-labeled endothelial progenitor cells following carotid balloon catheter injury in rats[J]. Biomed Pharmacother, 2024, 177:117022. DOI:10.1016/j.biopha.2024.117022 . |
| [51] | WEI H J, LIU R Y, ZHAO M, et al. Ischemia-Reperfusion accelerates neointimal hyperplasia via IL-1β-mediated pyrop-tosis after balloon injury in the rat carotid artery[J]. Biochem Biophys Rep, 2023, 36:101567. DOI:10.1016/j.bbrep.2023.101567 . |
| [52] | YE J, LYU T J, LI L Y, et al. Ginsenoside Re attenuates myocardial ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11[J]. Phytomedicine, 2023, 113:154681. DOI:10.1016/j.phymed.2023.154681 . |
| [53] | GÜLTEKIN Ç, SAYINER S, ÇETINEL Ş, et al. Does Ambroxol alleviate kidney ischemia-reperfusion injury in rats?[J]. Iran J Basic Med Sci, 2022, 25(8):1037-1041. DOI:10.22038/ijbms. 2022.64330.14148 . |
| [54] | JURCAU A, ARDELEAN A I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke[J]. Biomedicines, 2022, 10(3):574. DOI:10.3390/biomedicines 10030574 . |
| [55] | CHEN W X, ZHANG Y, WANG Z X, et al. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition[J]. Front Pharmacol, 2023, 14:1078205. DOI:10.3389/fphar.2023.1078205 . |
| [56] | TAMARGO I A, BAEK K I, XU C B, et al. HEG1 protects against atherosclerosis by regulating stable flow-induced KLF2/4 expression in endothelial cells[J]. Circulation, 2024, 149(15):1183-1201. DOI:10.1161/CIRCULATIONAHA.123.064735 . |
| [57] | ZHANG L N, PARKINSON J F, HASKELL C, et al. Mechanisms of intimal hyperplasia learned from a murine carotid artery ligation model[J]. Curr Vasc Pharmacol, 2008, 6(1):37-43. DOI:10.2174/157016108783331321 . |
| [58] | WAKAKO A, SADATO A, OEDA M, et al. Development of a model for plaque induction in rat carotid arteries[J]. Asian J Neurosurg, 2023, 18(3):499-507. DOI:10.1055/s-0043-1763522 . |
| [59] | SAITO T, MIKAMI T, HIRANO T, et al. Microbleeds due to reperfusion enhance early seizures after carotid ligation in a rat ischemic model[J]. Neurol Med Chir, 2023, 63(6):228-235. DOI:10.2176/jns-nmc.2022-0372 . |
| [60] | WILLIAMS H, BROWN B A, JOHNSON J L, et al. Use of mouse carotid artery ligation model of intimal thickening to probe vascular smooth muscle cell remodeling and function in atherosclerosis[J]. Methods Mol Biol, 2022, 2419:537-560. DOI:10.1007/978-1-0716-1924-7_33 . |
| [61] | MA Z H, MAO C F, CHEN X, et al. Peptide vaccine against ADAMTS-7 ameliorates atherosclerosis and postinjury neointima hyperplasia[J]. Circulation, 2023, 147(9):728-742. DOI:10.1161/CIRCULATIONAHA.122.061516 . |
| [62] | QI Y, GAZELIUS B, LINDEROTH B, et al. Arterial blood flow and microcirculatory changes in the rat groin flap after ischemia provocation by electrical stimulation of the artery[J]. Microvasc Res, 2001, 62(3):243-251. DOI:10.1006/mvre. 2001.2339 . |
| [63] | YU J Y, WANG W, YANG J N, et al. LncRNA PSR regulates vascular remodeling through encoding a novel protein arteridin[J]. Circ Res, 2022, 131(9):768-787. DOI:10.1161/CIRCRESAHA.122.321080 . |
| [64] | GACH O, FINIANOS L, PALMERS P J, et al. Complex percutaneous coronary intervention assisted by 3-dimensional printing model[J]. JACC Cardiovasc Interv, 2022, 15(13): e159-e161. DOI:10.1016/j.jcin.2022.04.029 . |
| [1] | LUO Yifan, ZHANG Zhenwei, MEI Lu, SHI Yeping, XING Yitong, ZHANG Zeqi, LI Chuxin, HAN Chunxia, YANG Pingshun, CHEN Qiusheng. Telocytes-Mediated Effects and Mechanisms of Anointing and Massage Therapy Using Oligopeptide-Herbal Medicine Composite Against Obesity in Rats [J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 551-560. |
| [2] | LIU Yang, CHENG Laiyang, GUO Zhongkun. Progress on Animal Models of Perimenopausal Syndrome Based on Traditional Chinese Medicine Disease-Syndrome Combination [J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 586-595. |
| [3] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [4] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [5] | LIU Liyu, JI Bo, LIU Xiaoxuan, FANG Yang, ZHANG Ling, GUO Tingting, QUAN Ye, LI Hewen, LIU Yitian. Exploration of Rat Fetal Lung Tissue Fixation Methods [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 432-438. |
| [6] | LIU Zhiwei, YANG Ran, LIAN Hao, ZHANG Yu, JIN Lilun. Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 259-268. |
| [7] | JIANG Meng, HAO Shulan, TONG Liguo, ZHONG Qiming, GAO Zhenfei, WANG Yonghui, WANG Xixing, JI Haijie. Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 251-258. |
| [8] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [9] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [10] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| [11] | YIN Yulian, MA Lina, TU Siyuan, CHEN Ling, YE Meina, CHEN Hongfeng. Establishment and Evaluation of a Rat Model of Non-Puerperal Mastitis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 587-596. |
| [12] | YANG Jin, YU Shiya, LIN Nan, FANG Yongchao, ZHAO Hu, QIU Jinwei, LIN Hongming, CHEN Huiyan, WANG Yu, WU Weihang. Effect of Modified Duodenal Exclusion Surgery on Glucose Metabolism in Rats with Type 2 Diabetes Mellitus [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 523-530. |
| [13] | QI Longju, CHEN Shiyuan, LIAO Zehua, SHI Yuanhu, SUN Yuyu, WANG Qinghua. Transcriptomic Analysis of Menstrual Blood-Derived Stem Cells Transplantation Combined with Exercise Training in Promoting Spinal Cord Injury Recovery in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 531-542. |
| [14] | ZHANG Naiqun, YUAN Piaopiao, CAO Linrong, YING Na, YANG Taotao. Application of PNR Detection in the Diagnosis and Drug-efficacy Evaluation of Diabetic Kidney Disease in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 543-549. |
| [15] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||