Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (6): 794-802.DOI: 10.12300/j.issn.1674-5817.2025.110
• Invertebrate Laboratory Animal: Cockroach • Previous Articles Next Articles
ZHOU Guanyu, ZHU Shiming(
)(
), LIU Fangfang(
)(
)
Received:2025-07-04
Revised:2025-10-08
Online:2025-12-25
Published:2025-12-19
Contact:
ZHU Shiming, LIU Fangfang
CLC Number:
ZHOU Guanyu,ZHU Shiming,LIU Fangfang. Research Advances on Periplaneta americana as an Experimental Animal Model[J]. Laboratory Animal and Comparative Medicine, 2025, 45(6): 794-802. DOI: 10.12300/j.issn.1674-5817.2025.110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2025.110
Figure 1 Schematic diagram of reproductive regulation in P. americanaNote: In corpora allata, brain-derived neuropeptide allatostatin inhibits JH biosynthesis, while IIS-TORC1 signaling promotes JH biosynthesis; The synthesized JH is secreted into the hemolymph, and it promotes the vitellogenesis process in the fat body, thereby generating Vg protein; The Vg protein is transported to oocytes and absorbed by them, ultimately promoting ovarian development and maturation. IIS, insulin/insulin-like growth factor signaling; TORC1, target of rapamycin complex 1; JH, juvenile hormone; Vg, vitellogenin.
| [1] | VRŠANSKÝ P, KAZIMÍROVÁ M. Cockroaches in time - 315 million years of ecosystem challenges[J]. Biologia, 2023, 78(6):1425-1427. DOI:10.1007/s11756-023-01383-w . |
| [2] | LI S, ZHU S M, JIA Q Q, et al. The genomic and functional landscapes of developmental plasticity in the American cockroach[J]. Nat Commun, 2018, 9(1):1008. DOI:10.1038/s41467-018-03281-1 . |
| [3] | BELL W J, ADIYODI K G. The American cockroach[M]. Dordrecht: Springer Netherlands, 1982, 1-3. DOI:10.1007/978-94-009-5827-2 . |
| [4] | LIN L G, WEN J Z, LI S, et al. Life-history traits from embryonic development to reproduction in the American cockroach[J]. Insects, 2022, 13(6):551. DOI:10.3390/insects13060551 . |
| [5] | ZHU S M, LIU F F, ZENG H C, et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach[J]. Development, 2020, 147(20):dev188805. DOI:10.1242/dev.188805 . |
| [6] | MIRA A, RAUBENHEIMER D. Divergent nutrition-related adaptations in two cockroach populations inhabiting different environments[J]. Physiol Entomol, 2002, 27(4):330-339. DOI:10.1046/j.1365-3032.2002.00306.x . |
| [7] | ESPERK T, TAMMARU T, NYLIN S. Intraspecific variability in number of larval instars in insects[J]. J Econ Entomol, 2007, 100(3):627-645. DOI:10.1603/0022-0493(2007)100 [627:ivinol]2.0.co;2. |
| [8] | LIU F F, YU S X, CHEN N, et al. Nutrition- and hormone-controlled developmental plasticity in blattodea[J]. Curr Opin Insect Sci, 2023, 60:101128. DOI:10.1016/j.cois.2023.101128 . |
| [9] | XIAN X F. Effects of mating on oviposition, and possibility of parthenogenesis of three domestic cockroach species, the American cockroach, Periplaneta americana; the Smoky brown cockroach, Periplaneta fuliginosa; and the German cockroach, Blattella germanica [J]. Med Entomol Zool, 1998, 49(1):27-32. DOI:10.7601/mez.49.27_1 . |
| [10] | DU E X, WANG S, LUAN Y X, et al. Convergent adaptation of cotheca formation as a reproductive strategy in polyneoptera[J]. Mol Biol Evol, 2022, 39(3):msac042. DOI:10.1093/molbev/msac042 . |
| [11] | REN C H, CHEN N, LI S. Harnessing "little mighty" cock-roaches: Pest management and beneficial utilization[J]. Innovation, 2023, 4(6):100531. DOI:10.1016/j.xinn.2023.100531 . |
| [12] | WANG X H, FANG X D, YANG P C, et al. The locust genome provides insight into swarm formation and long-distance flight[J]. Nat Commun, 2014, 5:2957. DOI:10.1038/ncomms 3957 . |
| [13] | JINDRA M, PALLI S R, RIDDIFORD L M. The juvenile hormone signaling pathway in insect development[J]. Annu Rev Entomol, 2013, 58:181-204. DOI:10.1146/annurev-ento-120811-153700 . |
| [14] | YAMANAKA N, REWITZ K F, O'CONNOR M B. Ecdysone control of developmental transitions: lessons from Drosophila research[J]. Annu Rev Entomol, 2013, 58:497-516. DOI:10.1146/annurev-ento-120811-153608 . |
| [15] | LIU S N, LI K, GAO Y, et al. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila [J]. Proc Natl Acad Sci USA, 2018, 115(1):139-144. DOI:10.1073/pnas.1716897115 . |
| [16] | ZHANG T L, SONG W, LI Z, et al. Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes[J]. Proc Natl Acad Sci USA, 2018, 115(15):3960-3965. DOI:10.1073/pnas.1800435115 . |
| [17] | KAYUKAWA T, JOURAKU A, ITO Y, et al. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis[J]. Proc Natl Acad Sci USA, 2017, 114(5):1057-1062. DOI:10.1073/pnas. 1615423114 . |
| [18] | WEAVER R J, PATERSON Z A. Characterization and temporal aspects of haemolymph juvenile hormone esterase in adult cockroach, Periplaneta americana [J]. J Insect Physiol, 1997, 43(6):521-532. DOI:10.1016/s0022-1910(97)00007-3 . |
| [19] | ZHANG X S, LI S, LIU S N. Juvenile hormone studies in Drosophila melanogaster [J]. Front Physiol, 2021, 12:785320. DOI:10.3389/fphys.2021.785320 . |
| [20] | JING Y P, WEN X P, LI L J, et al. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone[J]. Proc Natl Acad Sci USA, 2021, 118(37):e2106908118. DOI:10.1073/pnas.2106908118 . |
| [21] | SONG J S, WU Z X, WANG Z M, et al. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust[J]. Insect Biochem Mol Biol, 2014, 52:94-101. DOI:10.1016/j.ibmb.2014. 07.001 . |
| [22] | WU Z X, HE Q J, ZENG B J, et al. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis[J]. Development, 2020, 147(18):dev188813. DOI:10.1242/dev.188813 . |
| [23] | WU Z X, YANG L B, HE Q J, et al. Regulatory mechanisms of vitellogenesis in insects[J]. Front Cell Dev Biol, 2020, 8:593613. DOI:10.3389/fcell.2020.593613 . |
| [24] | WU Z X, ZHAO W X, LANG M Y, et al. Juvenile hormone and BMP signaling modulate fat body cell fate during the transition of previtellogenic development to vitellogenesis[J]. BMC Biol, 2025, 23(1):143. DOI:10.1186/s12915-025-02247-2 . |
| [25] | ZHENG H Y, WANG N B, YUN J Q, et al. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium[J]. PLoS Genet, 2022, 18(6):e1010292. DOI:10.1371/journal.pgen.1010292 . |
| [26] | SMYKAL V, BAJGAR A, PROVAZNIK J, et al. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus [J]. Insect Biochem Mol Biol, 2014, 45:69-76. DOI:10.1016/j.ibmb.2013.12.003 . |
| [27] | LUO W, LIU S N, ZHANG W Q, et al. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes[J]. Proc Natl Acad Sci USA, 2021, 118(39):e2104461118. DOI:10.1073/pnas.2104461118 . |
| [28] | TIAN Z, WANG K, GUO S, et al. The PBAP chromatin remodeling complex mediates summer diapause via H3K4me3-driven juvenile hormone regulation in Colaphellus bowringi [J]. Proc Natl Acad Sci USA, 2025, 122(12):e2422328122. DOI:10.1073/pnas.2422328122 . |
| [29] | LI Z X, ZHOU C S, CHEN Y M, et al. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach[J]. BMC Biol, 2022, 20(1):278. DOI:10.1186/s12915-022-01484-z . |
| [30] | MARCHAL E, HULT E F, HUANG J, et al. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development[J]. PLoS One, 2014, 9(9):e106737. DOI:10.1371/journal.pone.0106737 . |
| [31] | ZHU S M, CHEN X Y, XIA S S, et al. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana [J]. Insect Sci, 2024, 31(1):186-200. DOI:10.1111/1744-7917.13218 . |
| [32] | LIU F F, CUI Y Y, LU H N, et al. Myofilaments promote wing expansion and maintain genitalia morphology in the American cockroach, Periplaneta americana [J]. Insect Mol Biol, 2023, 32(1):46-55. DOI:10.1111/imb.12812 . |
| [33] | HANSEN I A, ATTARDO G M, PARK J H, et al. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny[J]. Proc Natl Acad Sci USA, 2004, 101(29):10626-10631. DOI:10.1073/pnas.0403460101 . |
| [34] | PÉREZ-HEDO M, RIVERA-PEREZ C, NORIEGA F G. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti [J]. Insect Biochem Mol Biol, 2013, 43(6):495-500. DOI:10.1016/j.ibmb.2013.03.008 . |
| [35] | ROY S, SAHA T T, ZOU Z, et al. Regulatory pathways controlling female insect reproduction[J]. Annu Rev Entomol, 2018, 63:489-511. DOI:10.1146/annurev-ento-020117-043258 . |
| [36] | ZHU S M, LIU F F, CHEN X Y, et al. Inter-organelle communication dynamically orchestrates juvenile hormone biosynthesis and female reproduction[J]. Natl Sci Rev, 2025, 12(3):nwaf022. DOI:10.1093/nsr/nwaf022 . |
| [37] | ZHONG J R, JING A D, ZHENG S J, et al. Physiological and molecular mechanisms of insect appendage regeneration[J]. Cell Regen, 2023, 12(1):9. DOI:10.1186/s13619-022-00156-1 . |
| [38] | ZHANG X S, WEI L, ZHANG W, et al. ERK-activated CK-2 triggers blastema formation during appendage regeneration[J]. Sci Adv, 2024, 10(12):eadk8331. DOI:10.1126/sciadv.adk8331 . |
| [39] | REN C H, WEN Y J, ZHENG S J, et al. Two transcriptional cascades orchestrate cockroach leg regeneration[J]. Cell Rep, 2024, 43(3):113889. DOI:10.1016/j.celrep.2024.113889 . |
| [40] | LIU F F, ZHANG S D, CHEN P, et al. Sex-biased juvenile hormone and gene expression underlie sex difference of stress resistance in the American cockroach[J]. J Pest Sci, 2025, 98(2):973-985. DOI:10.1007/s10340-024-01819-5 . |
| [41] | 王鹏伟, 杨菲, 曹文秋. 美洲大蠊提取物康复新液在国内外临床应用的研究进展[J]. 今日药学, 2023, 33(10):784-788. DOI:10.12048/j.issn.1674-229X.2023.10.012 . |
| WANG P W, YANG F, CAO W Q. Research progress on clinical application of Chinese medicine Periplaneta americana Linnaeus extract kangfuxin solution at home and abroad[J]. Pharm Today, 2023, 33(10):784-788. DOI:10.12048/j.issn.1674-229X.2023.10.012 . | |
| [42] | ZENG C J, LIAO Q, HU Y, et al. The role of Periplaneta americana (Blattodea: Blattidae) in modern versus traditional Chinese medicine[J]. J Med Entomol, 2019, 56(6):1522-1526. DOI:10.1093/jme/tjz081 . |
| [43] | ZHAO Y N, YANG A L, TU P F, et al. Anti-tumor effects of the American cockroach, Periplaneta americana [J]. Chin Med, 2017, 12(1):26. DOI:10.1186/s13020-017-0149-6 . |
| [44] | MA H Y, LI X, CHE J, et al. The inhibitory effect of Periplaneta americana L. on hepatocellular carcinoma: Explore the anti-hepatocellular carcinoma active site and its mechanism of action[J]. J Ethnopharmacol, 2022, 291:114884. DOI:10.1016/j.jep.2021.114884 . |
| [45] | 王华炜, 王路乔, 孟照辉. 心脉隆注射液治疗心血管疾病研究进展[J]. 中国现代应用药学, 2019, 36(23):2995-3000. DOI:10.13748/j.cnki.issn1007-7693.2019.23.023 . |
| WANG H W, WANG L Q, MENG Z H. Research progress of xinmailong injection in the treatment of cardiovascular disease[J]. Chin J Mod Appl Pharm, 2019, 36(23):2995-3000. DOI:10.13748/j.cnki.issn1007-7693.2019.23.023 . | |
| [46] | KANCHONGKITTIPHON W, MENDELL M J, GAFFIN J M, et al. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine[J]. Environ Health Perspect, 2015, 123(1):6-20. DOI:10.1289/ehp.1307922 . |
| [47] | DO D C, ZHAO Y, GAO P. Cockroach allergen exposure and risk of asthma[J]. Allergy, 2016, 71(4):463-474. DOI:10.1111/all.12827 . |
| [48] | TOGIAS A, FENTON M J, GERGEN P J, et al. Asthma in the inner city: the perspective of the National Institute of Allergy and Infectious Diseases[J]. J Allergy Clin Immunol, 2010, 125(3):540-544. DOI:10.1016/j.jaci.2010.01.040 . |
| [49] | PUMHIRUN P, TOWIWAT P, MAHAKIT P. Aeroallergen sensitivity of Thai patients with allergic rhinitis[J]. Asian Pac J Allergy Immunol, 1997, 15(4):183-185. |
| [50] | WANG L Y, XIONG Q, SAELIM N, et al. Genome assembly and annotation of Periplaneta americana reveal a comprehensive cockroach allergen profile[J]. Allergy, 2023, 78(4):1088-1103. DOI:10.1111/all.15531 . |
| [1] | Expert Committee on Medical Animal Experiments, Chinese Research Hospital Association, Professional Committee on Neural Regeneration and Tissue–Organ Injury Repair, Chinese Research Hospital Association, Section of Engineering Anatomy, Chinese Society for Anatomical Sciences, LI Zhonghai, LI Bin, ZHAO Jie, YANG Cao, LI Yingjun. Guidelines for Selecting Animal Models in Preclinical Research of Intervertebral Disc Degeneration (2025 Edition) [J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 524-541. |
| [2] | Guangyuan YAO, Ping DONG, Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU. Research Progress on Animal Models of Long Bone Fractures [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. |
| [3] | Xiaoyu LIU, Xuancheng LU, Xiaomeng SHI, Yuzhou ZHANG, Chao LÜ, Guoyuan CHEN, Xiao LU, Yu BAI, Jing GAO, Yao LI, Yonggang LIU, Yufeng TAO, Wanyong PANG. Explanation and Elaboration for the ARRIVE Guidelines 2.0—Reporting Animal Research and In Vivo Experiments (Ⅲ) [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 446-456. |
| [4] | Lixiang CHEN, Boyin QIN, Hua YANG, Chunhua XU, Xiuhua PENG, Shun LI, Xiaohui ZHOU. Application Prospect of Identification and Traceability Technology of Laboratory Animals in Biosafety Laboratory [J]. Laboratory Animal and Comparative Medicine, 2022, 42(2): 89-94. |
| [5] | ZHAO Wei-bo, MIN Fan-gui, PAN Jin-chun, MEI Yi-duo, HUANG Hai-yan, HUANG Ren. Investigation on Several Heavy Metals and Harmful Chemicals in Different Beddings [J]. Laboratory Animal and Comparative Medicine, 2018, 38(4): 304-306. |
| [6] | LIU Yan-Qing, ZHANG Shou-Gang, CHENG Jie, XIAO Hang, GAO Rong. Insecticidal Activity of Twelve Novel Pyridine Ring Derivatives of Podophyllotoxin [J]. Laboratory Animal and Comparative Medicine, 2006, 26(3): 144-147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||