Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (5): 524-541.DOI: 10.12300/j.issn.1674-5817.2025.048
• Animal Models of Human Diseases • Previous Articles Next Articles
Expert Committee on Medical Animal Experiments, Chinese Research Hospital Association, Professional Committee on Neural Regeneration and Tissue–Organ Injury Repair, Chinese Research Hospital Association, Section of Engineering Anatomy, Chinese Society for Anatomical Sciences, LI Zhonghai(
), LI Bin(
), ZHAO Jie(
), YANG Cao(
), LI Yingjun(
)
Received:2025-03-24
Revised:2025-08-23
Online:2025-10-25
Published:2025-10-23
Contact:
LI Zhonghai, LI Bin, ZHAO Jie, YANG Cao, LI Yingjun
CLC Number:
LI Zhonghai,LI Bin,ZHAO Jie,et al. Guidelines for Selecting Animal Models in Preclinical Research of Intervertebral Disc Degeneration (2025 Edition)[J]. Laboratory Animal and Comparative Medicine, 2025, 45(5): 524-541. DOI: 10.12300/j.issn.1674-5817.2025.048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2025.048
作者 Authors | 年份 Years | 动物 Animals | 药物及剂量 Medicines & doses | 造模时长/周 Post-induction durations /weeks |
|---|---|---|---|---|
| Suh等[ | 2022 | 大鼠 | 碘乙酸钠(sodium iodoacetate) 4 mg | 6 |
| Sudo等[ | 2021 | 兔 | 碘乙酸钠(sodium iodoacetate) 1 mg | 12 |
| Borem等[ | 2021 | 绵羊 | 软骨素酶(chondroitinase ABC) 1 U | 17 |
| Zhang等[ | 2020 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 |
| Gullbrand等[ | 2017 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 |
| Zamora等[ | 2017 | 山羊 | 1a型痤疮丙酸杆菌(strain 1a Propionibacterium acnes)5 μL (1×107 CFU/μL) | 12 |
| Shan等[ | 2017 | 兔 | 痤疮丙酸杆菌(Propionibacterium acnes)100 μL (1.6×107 CFU/mL) | 36 |
| Yuan等[ | 2015 | 大鼠 | 无水乙醇(absolute ethanol) 30 μL | 16 |
| Kang等[ | 2015 | 猪 | 肿瘤坏死因子-α(TNF-α) 50/100 ng | 12 |
| Liu等[ | 2013 | 兔 | 1 μmol/L N端30 kDa纤连蛋白片段(N-terminal 30 kDa fibronectin fragment, Fn-f)25 μL | 16 |
| Hoogendoo等[ | 2008 | 山羊 | 软骨素酶(chondroitinase ABC) 0.035 U(0.25 U/mL) | 26 |
| Zhou等[ | 2007 | 绵羊 | 5-溴脱氧尿苷(5-bromodeoxyuridine, BrdU)4~5 mg | 14 |
Table 1 Research information on inducing IDD by intradiscal chemical injection
作者 Authors | 年份 Years | 动物 Animals | 药物及剂量 Medicines & doses | 造模时长/周 Post-induction durations /weeks |
|---|---|---|---|---|
| Suh等[ | 2022 | 大鼠 | 碘乙酸钠(sodium iodoacetate) 4 mg | 6 |
| Sudo等[ | 2021 | 兔 | 碘乙酸钠(sodium iodoacetate) 1 mg | 12 |
| Borem等[ | 2021 | 绵羊 | 软骨素酶(chondroitinase ABC) 1 U | 17 |
| Zhang等[ | 2020 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 |
| Gullbrand等[ | 2017 | 山羊 | 软骨素酶(chondroitinase ABC)1/5 U | 12 |
| Zamora等[ | 2017 | 山羊 | 1a型痤疮丙酸杆菌(strain 1a Propionibacterium acnes)5 μL (1×107 CFU/μL) | 12 |
| Shan等[ | 2017 | 兔 | 痤疮丙酸杆菌(Propionibacterium acnes)100 μL (1.6×107 CFU/mL) | 36 |
| Yuan等[ | 2015 | 大鼠 | 无水乙醇(absolute ethanol) 30 μL | 16 |
| Kang等[ | 2015 | 猪 | 肿瘤坏死因子-α(TNF-α) 50/100 ng | 12 |
| Liu等[ | 2013 | 兔 | 1 μmol/L N端30 kDa纤连蛋白片段(N-terminal 30 kDa fibronectin fragment, Fn-f)25 μL | 16 |
| Hoogendoo等[ | 2008 | 山羊 | 软骨素酶(chondroitinase ABC) 0.035 U(0.25 U/mL) | 26 |
| Zhou等[ | 2007 | 绵羊 | 5-溴脱氧尿苷(5-bromodeoxyuridine, BrdU)4~5 mg | 14 |
IDD 模型 IDD models | 优点 Advantages | 缺点 Disadvantages | 饲养成本 Husbandry costs | 造模成本 Modeling costs | 适用情况 Applicability |
|---|---|---|---|---|---|
纤维环损伤模型 Annulus fibrosus injury model | 操作简便,重复性高; 退变程度可控; 造模时间短 | 人为损伤,与人类自然退变过程存在差异; 可能引起急性炎症反应 | 低 | 低 | 研究急性损伤后的生物学变化; 评估短期干预效果 风险提示:该模型退变机制与人类自然过程存在差异,临床外推需谨慎 |
髓核损伤模型 Nucleus pulposus injury model | 可特异性损伤髓核细胞;退变程度可控 | 化学试剂可能引起非特异性损伤; 注射过程可能损伤纤维环;手术复杂度较高; 可能引起椎间盘结构不稳定 | 低 | 中 | 研究髓核细胞在退变中的作用; 探讨化学因素的影响 风险提示:化学损伤机制与人类病理不完全一致,药效外推有限 |
终板损伤模型 Vertebral endplate injury model | 模拟营养供应不足导致的退变; 与人类退变机制相似 | 手术操作复杂; 可能影响周围骨组织 | 低 | 中 | 研究终板在退变中的作用; 探讨椎间盘营养供应的影响 风险提示:部分动物骨-软骨结构与人类不同,影响结果解释和转化 |
尾部压缩模型 Caudal disc compression model | 模拟机械力失衡导致的退变; 操作相对简便 | 鼠尾椎与人类腰椎差异较大; 专用设备成本高 | 低 | 中 | 研究机械负荷对退变的影响; 探讨力学因素的致病机制 风险提示:解剖结构与人类有别,机械响应差异影响外推 |
双足直立模型 Bipedal standing model | 模拟人类直立行走的生物力学环境; 腰椎受力更接近人类 | 对动物应激大[如行为改变、体重下降、血清皮质酮(CORT)水平升高等],存在伦理问题; 操作复杂,需要特殊设备 | 低 | 高 | 研究直立姿势对退变的影响; 探讨长期轴向负荷的作用 风险提示:动物应激反应强,长期结局与人类尚存差异 |
腰椎不稳模型 Lumbar instability model | 模拟脊柱稳定性下降导致的退变; 未直接损伤椎间盘结构 | 手术操作复杂,创伤大; 退变过程较慢,需较长实验周期 | 低 | 高 | 研究脊柱稳定性与退变的关系; 探讨相邻节段退变机制 风险提示:手术创伤及愈合过程与人类不同,临床转化需谨慎 |
自发性退变模型 Spontaneous disc degeneration model | 最接近人类自然退变过程; 无人为干预,避免了操作干扰 | 退变过程缓慢,周期长; 个体差异大,结果可变性高 | 高 | 低 | 研究年龄相关的退变机制; 长期疗效评估 风险提示:动物寿命及生理代谢与人类有差异,长期转化存在局限 |
基因修饰模型 Genetically modified model | 可研究特定基因在退变中的作用; 模拟遗传性退变过程 | 操作复杂,成本高; 可能引起全身性影响,存在混杂因素 | 高 | 高 | 研究基因功能和信号通路; 探索基因治疗的潜在靶点 风险提示:遗传背景与人类差异大,部分表型转化有限 |
Table 2 Comparative analysis of different IDD animal models: advantages, disadvantages, and applicability
IDD 模型 IDD models | 优点 Advantages | 缺点 Disadvantages | 饲养成本 Husbandry costs | 造模成本 Modeling costs | 适用情况 Applicability |
|---|---|---|---|---|---|
纤维环损伤模型 Annulus fibrosus injury model | 操作简便,重复性高; 退变程度可控; 造模时间短 | 人为损伤,与人类自然退变过程存在差异; 可能引起急性炎症反应 | 低 | 低 | 研究急性损伤后的生物学变化; 评估短期干预效果 风险提示:该模型退变机制与人类自然过程存在差异,临床外推需谨慎 |
髓核损伤模型 Nucleus pulposus injury model | 可特异性损伤髓核细胞;退变程度可控 | 化学试剂可能引起非特异性损伤; 注射过程可能损伤纤维环;手术复杂度较高; 可能引起椎间盘结构不稳定 | 低 | 中 | 研究髓核细胞在退变中的作用; 探讨化学因素的影响 风险提示:化学损伤机制与人类病理不完全一致,药效外推有限 |
终板损伤模型 Vertebral endplate injury model | 模拟营养供应不足导致的退变; 与人类退变机制相似 | 手术操作复杂; 可能影响周围骨组织 | 低 | 中 | 研究终板在退变中的作用; 探讨椎间盘营养供应的影响 风险提示:部分动物骨-软骨结构与人类不同,影响结果解释和转化 |
尾部压缩模型 Caudal disc compression model | 模拟机械力失衡导致的退变; 操作相对简便 | 鼠尾椎与人类腰椎差异较大; 专用设备成本高 | 低 | 中 | 研究机械负荷对退变的影响; 探讨力学因素的致病机制 风险提示:解剖结构与人类有别,机械响应差异影响外推 |
双足直立模型 Bipedal standing model | 模拟人类直立行走的生物力学环境; 腰椎受力更接近人类 | 对动物应激大[如行为改变、体重下降、血清皮质酮(CORT)水平升高等],存在伦理问题; 操作复杂,需要特殊设备 | 低 | 高 | 研究直立姿势对退变的影响; 探讨长期轴向负荷的作用 风险提示:动物应激反应强,长期结局与人类尚存差异 |
腰椎不稳模型 Lumbar instability model | 模拟脊柱稳定性下降导致的退变; 未直接损伤椎间盘结构 | 手术操作复杂,创伤大; 退变过程较慢,需较长实验周期 | 低 | 高 | 研究脊柱稳定性与退变的关系; 探讨相邻节段退变机制 风险提示:手术创伤及愈合过程与人类不同,临床转化需谨慎 |
自发性退变模型 Spontaneous disc degeneration model | 最接近人类自然退变过程; 无人为干预,避免了操作干扰 | 退变过程缓慢,周期长; 个体差异大,结果可变性高 | 高 | 低 | 研究年龄相关的退变机制; 长期疗效评估 风险提示:动物寿命及生理代谢与人类有差异,长期转化存在局限 |
基因修饰模型 Genetically modified model | 可研究特定基因在退变中的作用; 模拟遗传性退变过程 | 操作复杂,成本高; 可能引起全身性影响,存在混杂因素 | 高 | 高 | 研究基因功能和信号通路; 探索基因治疗的潜在靶点 风险提示:遗传背景与人类差异大,部分表型转化有限 |
| [1] | STUBBS B, KOYANAGI A, THOMPSON T, et al. The epidemiology of back pain and its relationship with depression, psychosis, anxiety, sleep disturbances, and stress sensitivity: Data from 43 low- and middle-income countries[J]. Gen Hosp Psychiatry, 2016, 43:63-70. DOI:10.1016/j.genhosppsych.2016.09.008 . |
| [2] | SHMAGEL A, FOLEY R, IBRAHIM H. Epidemiology of chronic low back pain in US adults: data from the 2009-2010 national health and nutrition examination survey[J]. Arthritis Care Res, 2016, 68(11):1688-1694. DOI:10.1002/acr.22890 . |
| [3] | TERAGUCHI M, YOSHIMURA N, HASHIZUME H, et al. Progression, incidence, and risk factors for intervertebral disc degeneration in a longitudinal population-based cohort: the Wakayama Spine Study[J]. Osteoarthritis Cartilage, 2017, 25(7):1122-1131. DOI:10.1016/j.joca.2017.01.001 . |
| [4] | CHEUNG K M C, KARPPINEN J, CHAN D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J]. Spine, 2009, 34(9):934-940. DOI:10.1097/BRS.0b013e3181a01b3f . |
| [5] | ROUSSOULY P, NNADI C. Sagittal plane deformity: an overview of interpretation and management[J]. Eur Spine J, 2010, 19(11):1824-1836. DOI:10.1007/s00586-010-1476-9 . |
| [6] | BARREY C, ROUSSOULY P, PERRIN G, et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms?[J]. Eur Spine J, 2011, 20():626-633. DOI:10.1007/s00586-011-1930-3 . |
| [7] | ALINI M, EISENSTEIN S M, ITO K, et al. Are animal models useful for studying human disc disorders/degeneration?[J]. Eur Spine J, 2008, 17(1):2-19. DOI:10.1007/s00586-007-0414-y . |
| [8] | SINGH K, MASUDA K, AN H S. Animal models for human disc degeneration[J]. Spine J, 2005, 5(6 ):267S-279S. DOI:10.1016/j.spinee.2005.02.016 . |
| [9] | MERN D S, WALSEN T, BEIERFUß A, et al. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases[J]. Exp Biol Med, 2021, 246(4):483-512. DOI:10.1177/1535370220969123 . |
| [10] | GOEL S A, VARGHESE V, DEMIR T. Animal models of spinal injury for studying back pain and SCI[J]. J Clin Orthop Trauma, 2020, 11(5):816-821. DOI:10.1016/j.jcot.2020.07.004 . |
| [11] | CHEN X, CHEN H K, LI B L, et al. Dynamic elastic modulus assessment of the early degeneration model of an intervertebral disc in Cynomolgus monkeys with one strike loading[J]. Comput Methods Programs Biomed, 2022, 224:106982. DOI:10.1016/j.cmpb.2022.106982 . |
| [12] | WANG Y D, KANG J H, GUO X D, et al. Intervertebral disc degeneration models for pathophysiology and regenerative therapy-benefits and limitations[J]. J Invest Surg, 2022, 35(4):935-952. DOI:10.1080/08941939.2021.1953640 . |
| [13] | LEE N N, KRAMER J S, STOKER A M, et al. Canine models of spine disorders[J]. JOR Spine, 2020, 3(4): e1109. DOI:10.1002/jsp2.1109 . |
| [14] | POLETTO D L, CROWLEY J D, TANGLAY O, et al. Preclinical in vivo animal models of intervertebral disc degeneration. Part 1: a systematic review[J]. JOR Spine, 2022, 6(1): e1234. DOI:10.1002/jsp2.1234 . |
| [15] | AN H S, MASUDA K. Relevance of in vitro and in vivo models for intervertebral disc degeneration[J]. J Bone Joint Surg Am, 2006, 88():88-94. DOI:10.2106/JBJS.E.01272 . |
| [16] | ELLIOTT D M, SARVER J J. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc[J]. Spine, 2004, 29(7):713-722. DOI:10.1097/01.brs.0000116982.19331.ea . |
| [17] | O'CONNELL G D, VRESILOVIC E J, ELLIOTT D M. Comparison of animals used in disc research to human lumbar disc geometry[J]. Spine, 2007, 32(3):328-333. DOI:10.1097/01.brs.0000253961.40910.c1 . |
| [18] | HOOGENDOORN R W, LU Z F, KROEZE R J, et al. Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future[J]. J Cell Mol Med, 2008, 12(6A):2205-2216. DOI:10.1111/j.1582-4934.2008.00291.x . |
| [19] | MIYAZAKI T, KOBAYASHI S, TAKENO K, et al. A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders?[J]. Tissue Eng Part A, 2009, 15(12):3835-3846. DOI:10.1089/ten.tea.2009.0250 . |
| [20] | SHENG S R, WANG X Y, XU H Z, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review[J]. Eur Spine J, 2010, 19(1):46-56. DOI:10.1007/s00586-009-1192-5 . |
| [21] | KEY J A, FORD L T. Experimental intervertebral-disc lesions[J]. J Bone Joint Surg Am, 1948, 30A(3):621-630. |
| [22] | GUO Q, ZHU D, WANG Y, et al. Targeting STING attenuates ROS induced intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2021, 29(8):1213-1224. DOI:10.1016/j.joca.2021.04.017 . |
| [23] | XIAO L, XU S J, LIU C, et al. Sod2 and catalase improve pathological conditions of intervertebral disc degeneration by modifying human adipose-derived mesenchymal stem cells[J]. Life Sci, 2021, 267:118929. DOI:10.1016/j.lfs.2020.118929 . |
| [24] | ASHINSKY B G, GULLBRAND S E, BONNEVIE E D, et al. Multiscale and multimodal structure-function analysis of intervertebral disc degeneration in a rabbit model[J]. Osteoarthritis Cartilage, 2019, 27(12):1860-1869. DOI:10.1016/j.joca.2019.07.016 . |
| [25] | PIAZZA M, PECK S H, GULLBRAND S E, et al. Quantitative MRI correlates with histological grade in a percutaneous needle injury mouse model of disc degeneration[J]. J Orthop Res, 2018, 36(10):2771-2779. DOI:10.1002/jor.24028 . |
| [26] | LEI T, ZHANG Y, ZHOU Q, et al. A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits[J]. Am J Transl Res, 2017, 9(3):900 -909. |
| [27] | MOSS I L, ZHANG Y J, SHI P, et al. Retroperitoneal approach to the intervertebral disc for the annular puncture model of intervertebral disc degeneration in the rabbit[J]. Spine J, 2013, 13(3):229-234. DOI:10.1016/j.spinee.2012.02.028 . |
| [28] | WANG Y, WU Y, DENG M Y, et al. Establishment of a rabbit intervertebral disc degeneration model by percutaneous posterolateral puncturing of lumbar discs under local anesthesia[J]. World Neurosurg, 2021, 154: e830-e837. DOI:10.1016/j.wneu.2021.08.024 . |
| [29] | HUANG Y L, WANG L, LUO B F, et al. Associations of lumber disc degeneration with paraspinal muscles myosteatosis in discogenic low back pain[J]. Front Endocrinol, 2022, 13:891088. DOI:10.3389/fendo.2022.891088 . |
| [30] | LUO T D, MARQUEZ-LARA A, ZABARSKY Z K, et al. A percutaneous, minimally invasive annulus fibrosus needle puncture model of intervertebral disc degeneration in rabbits[J]. J Orthop Surg, 2018, 26(3):2309499018792715. DOI:10.1177/2309499018792715 . |
| [31] | BALDIA M, MANI S, WALTER N, et al. Development of a unique mouse intervertebral disc degeneration model using a simple novel tool[J]. Asian Spine J, 2021, 15(4):415-423. DOI:10.31616/asj.2020.0366 . |
| [32] | QIAN J L, GE J, YAN Q, et al. Selection of the optimal puncture needle for induction of a rat intervertebral disc degeneration model[J]. Pain Physician, 2019, 22(4):353-360. |
| [33] | MASUDA K, AOTA Y, MUEHLEMAN C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine, 2005, 30(1):5-14. DOI:10.1097/01.brs.0000148152.04401.20 . |
| [34] | SOBAJIMA S, KOMPEL J F, KIM J S, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology[J]. Spine, 2005, 30(1):15-24. DOI:10.1097/01.brs.0000148048.15348.9b . |
| [35] | XI Y M, KONG J, LIU Y, et al. Minimally invasive induction of an early lumbar disc degeneration model in Rhesus monkeys[J]. Spine, 2013, 38(10): E579-E586. DOI:10.1097/BRS.0b013e31828b695b . |
| [36] | TIAN Z Z, MA X Y, YASEN M, et al. Intervertebral disc degeneration in a percutaneous mouse tail injury model[J]. Am J Phys Med Rehabil, 2018, 97(3):170-177. DOI:10.1097/PHM.0000000000000818 . |
| [37] | KIM K S, YOON S T, LI J, et al. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models[J]. Spine, 2005, 30(1):33-37. DOI:10.1097/01.brs.0000149191.02304.9b . |
| [38] | TIAN T, WANG H D, LI Z H, et al. Intervertebral disc degeneration induced by needle puncture and ovariectomy: a rat coccygeal model[J]. Biomed Res Int, 2021, 2021:5510124. DOI:10.1155/2021/5510124 . |
| [39] | CHEN D H, XIA D D, PAN Z Y, et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo [J]. Cell Death Dis, 2016, 7(10): e2441. DOI:10.1038/cddis.2016.334 . |
| [40] | TANG Z H, HU B, ZANG F Z, et al. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration[J]. Cell Death Dis, 2019, 10(7):510. DOI:10.1038/s41419-019-1701-3 . |
| [41] | KOBORI S, MIYAGI M, ORITA S, et al. Inhibiting IκB kinase-β downregulates inflammatory cytokines in injured discs and neuropeptides in dorsal root Ganglia innervating injured discs in rats[J]. Spine, 2014, 39(15):1171-1177. DOI:10.1097/BRS.0000000000000374 . |
| [42] | LIU Y, LIN J Y, WU X X, et al. Aspirin-mediated attenuation of intervertebral disc degeneration by ameliorating reactive oxygen species in vivo and in vitro [J]. Oxid Med Cell Longev, 2019, 2019:7189854. DOI:10.1155/2019/7189854 . |
| [43] | SUH H R, CHO H Y, HAN H C. Development of a novel model of intervertebral disc degeneration by the intradiscal application of monosodium iodoacetate (MIA) in rat[J]. Spine J, 2022, 22(1):183-192. DOI:10.1016/j.spinee.2021.06.008 . |
| [44] | SUDO T, AKEDA K, KAWAGUCHI K, et al. Intradiscal injection of monosodium iodoacetate induces intervertebral disc degeneration in an experimental rabbit model[J]. Arthritis Res Ther, 2021, 23(1):297. DOI:10.1186/s13075-021-02686-6 . |
| [45] | YUAN W, CHE W, JIANG Y Q, et al. Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail[J]. Spine J, 2015, 15(5):1050-1059. DOI:10.1016/j.spinee.2015.01.026 . |
| [46] | ZHANG C H, GULLBRAND S E, SCHAER T P, et al. Inflammatory cytokine and catabolic enzyme expression in a goat model of intervertebral disc degeneration[J]. J Orthop Res, 2020, 38(11):2521-2531. DOI:10.1002/jor.24639 . |
| [47] | GULLBRAND S E, MALHOTRA N R, SCHAER T P, et al. A large animal model that recapitulates the spectrum of human intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2017, 25(1):146-156. DOI:10.1016/j.joca.2016.08.006 . |
| [48] | MAO H J, CHEN Q X, HAN B, et al. The effect of injection volume on disc degeneration in a rat tail model[J]. Spine, 2011, 36(16): E1062-E1069. DOI:10.1097/BRS.0b013e3182027d42 . |
| [49] | LIN Y Z, JIAO Y C, YUAN Y, et al. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway[J]. Emerg Microbes Infect, 2018, 7(1):1. DOI:10.1038/s41426-017-0002-0 . |
| [50] | ZAMORA T, PALMA J, ANDIA M, et al. Effect of Propionibacterium acnes (PA) injection on intervertebral disc degeneration in a rat model: Does it mimic modic changes?[J]. Orthop Traumatol Surg Res, 2017, 103(5):795-799. DOI:10.1016/j.otsr.2017.04.005 . |
| [51] | SHAN Z, ZHANG X Y, LI S Y, et al. Propionibacterium acnes incubation in the discs can result in time-dependent modic changes: a long-term rabbit model[J]. Spine, 2017, 42(21):1595-1603. DOI:10.1097/BRS.0000000000002192 . |
| [52] | BOREM R, WALTERS J, MADELINE A, et al. Characterization of chondroitinase-induced lumbar intervertebral disc degeneration in a sheep model intended for assessing biomaterials[J]. J Biomed Mater Res A, 2021, 109(7):1232-1246. DOI:10.1002/jbm.a.37117 . |
| [53] | KANG R, LI H S, RICKERS K, et al. Intervertebral disc degenerative changes after intradiscal injection of TNF-α in a porcine model[J]. Eur Spine J, 2015, 24(9):2010-2016. DOI:10.1007/s00586-015-3926-x . |
| [54] | LIU H F, ZHANG H, QIAO G X, et al. A novel rabbit disc degeneration model induced by fibronectin fragment[J]. Joint Bone Spine, 2013, 80(3):301-306. DOI:10.1016/j.jbspin. 2012.07.009 . |
| [55] | HOOGENDOORN R J W, HELDER M N, KROEZE R J, et al. Reproducible long-term disc degeneration in a large animal model[J]. Spine, 2008, 33(9):949-954. DOI:10.1097/BRS.0b013e31816c90f0 . |
| [56] | ZHOU H W, HOU S X, SHANG W L, et al. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology[J]. Spine, 2007, 32(8):864-872. DOI:10.1097/01.brs.0000259835.31062.3d . |
| [57] | SHI C G, DAS V, LI X, et al. Development of an in vivo mouse model of discogenic low back pain[J]. J Cell Physiol, 2018, 233(10):6589-6602. DOI:10.1002/jcp.26280 . |
| [58] | FLOUZAT-LACHANIETTE C H, JULLIEN N, BOUTHORS C, et al. A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury[J]. Int Orthop, 2018, 42(9):2263-2272. DOI:10.1007/s00264-018-3971-2 . |
| [59] | SU Q H, CAI Q C, LI Y C, et al. A novel rat model of vertebral inflammation-induced intervertebral disc degeneration mediated by activating cGAS/STING molecular pathway[J]. J Cell Mol Med, 2021, 25(20):9567-9585. DOI:10.1111/jcmm.16898 . |
| [60] | WEI F X, ZHONG R, PAN X M, et al. Computed tomography-guided sub-end plate injection of pingyangmycin for a novel rabbit model of slowly progressive disc degeneration[J]. Spine J, 2019, 19(2): e6-e18. DOI:10.1016/j.spinee.2015.04.004 . |
| [61] | WEI F X, ZHONG R, ZHOU Z Y, et al. In vivo experimental intervertebral disc degeneration induced by bleomycin in the Rhesus monkey[J]. BMC Musculoskelet Disord, 2014, 15:340. DOI:10.1186/1471-2474-15-340 . |
| [62] | JIN Y M, MAO G F, YANG C, et al. Establishment of a new model of lumbar intervertebral disc degeneration with pathological characteristics[J]. Global Spine J, 2023, 13(4):984-994. DOI:10.1177/21925682211012323 . |
| [63] | LONNER B S, TOOMBS C S, MECHLIN M, et al. MRI screening in operative scheuermann kyphosis: is it necessary?[J]. Spine Deform, 2017, 5(2):124-133. DOI:10.1016/j.jspd.2016.10.008 . |
| [64] | LONNER B S, REN Y, UPASANI V V, et al. Disc degeneration in unfused caudal motion segments ten years following surgery for adolescent idiopathic scoliosis[J]. Spine Deform, 2018, 6(6):684-690. DOI:10.1016/j.jspd.2018.03.013 . |
| [65] | YURUBE T, HIRATA H, ITO M, et al. Involvement of autophagy in rat tail static compression-induced intervertebral disc degeneration and notochordal cell disappearance[J]. Int J Mol Sci, 2021, 22(11):5648. DOI:10.3390/ijms22115648 .. |
| [66] | LIU Z C, ZHOU Q, ZHENG J C, et al. A novel in vivo mouse intervertebral disc degeneration model induced by compressive suture[J]. Exp Cell Res, 2021, 398(1):112359. DOI:10.1016/j.yexcr.2020.112359 . |
| [67] | JI Y C, ZHU P F, ZHANG L L, et al. A novel rat tail disc degeneration model induced by static bending and compression[J]. Animal Model Exp Med, 2021, 4(3):261-267. DOI:10.1002/ame2.12178 . |
| [68] | NORCROSS J P, LESTER G E, WEINHOLD P, et al. An in vivo model of degenerative disc disease[J]. J Orthop Res, 2003, 21(1):183-188. DOI:10.1016/S0736-0266(02)00098-0 . |
| [69] | CHING C T S, CHOW D H K, YAO F Y D, et al. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model[J]. Med Eng Phys, 2004, 26(7):587-594. DOI:10.1016/j.medengphy. 2004. 03.006 . |
| [70] | YAO W, JEE W S, CHEN J, et al. Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy-induced bone loss and added bone to intact rats[J]. J Bone Miner Res, 2000, 15(6):1158-1168. DOI:10.1359/jbmr.2000. 15.6.1158 . |
| [71] | GOFF C W, LANDMESSER W. Bipedal rats and mice; laboratory animals for orthopaedic research[J]. J Bone Joint Surg Am, 1957, 39-A(3):616-622. |
| [72] | AO X, WANG L, SHAO Y, et al. Development and characterization of a novel bipedal standing mouse model of intervertebral disc and facet joint degeneration[J]. Clin Orthop Relat Res, 2019, 477(6):1492-1504. DOI:10.1097/CORR.0000000000000712 . |
| [73] | LIANG X, SHEN H, SHI W D, et al. Effect of axial vertical vibration on degeneration of lumbar intervertebral discs in modified bipedal rats: an in-vivo study[J]. Asian Pac J Trop Med, 2017, 10(7):714-717. DOI:10.1016/j.apjtm.2017.07.014 . |
| [74] | BAI X D, WANG D L, ZHOU M Y, et al. Noninvasive cumulative axial load may induce intervertebral disc degeneration-a potential rabbit model[J]. Exp Ther Med, 2017, 13(4):1438-1446. DOI:10.3892/etm.2017.4148 . |
| [75] | LAO Y J, XU T T, JIN H T, et al. Accumulated spinal axial biomechanical loading induces degeneration in inter-vertebral disc of mice lumbar spine[J]. Orthop Surg, 2018, 10(1):56-63. DOI:10.1111/os.12365 . |
| [76] | MIYAMOTO S, YONENOBU K, ONO K. Experimental cervical spondylosis in the mouse[J]. Spine, 1991, 16(10 ): S495-S500. DOI:10.1097/00007632-199110001-00008 . |
| [77] | LIU S F, SUN Y L, DONG J C, et al. A mouse model of lumbar spine instability[J]. J Vis Exp, 2021(170): (170). DOI:10.3791/61722 . |
| [78] | OICHI T, TANIGUCHI Y, SOMA K, et al. A mouse intervertebral disc degeneration model by surgically induced instability[J]. Spine, 2018, 43(10): E557-E564. DOI:10.1097/BRS.0000000000002427 . |
| [79] | FU F D, BAO R H, YAO S, et al. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth[J]. Sci Rep, 2021, 11(1):772. DOI:10.1038/s41598-020-80756-6 . |
| [80] | HEI L, GE Z H, YUAN W Q, et al. Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage[J]. Neurol Res, 2021, 43(6):447-457. DOI:10.1080/01616412. 2020.1866804 . |
| [81] | WANG T, PELLETIER M H, CHRISTOU C, et al. A novel in vivo large animal model of lumbar spinal joint degeneration[J]. Spine J, 2018, 18(10):1896-1909. DOI:10.1016/j.spinee. 2018.05.022 . |
| [82] | SILBERBERG R. Histologic and morphometric observations on vertebral bone of aging sand rats[J]. Spine, 1988, 13(2):202-208. DOI:10.1097/00007632-198802000-00013 . |
| [83] | GRUBER H E, JOHNSON T, NORTON H J, et al. The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses[J]. Spine, 2002, 27(3):230-234. DOI:10.1097/00007632-200202010-00004 . |
| [84] | OHNISHI T, SUDO H, TSUJIMOTO T, et al. Age-related spontaneous lumbar intervertebral disc degeneration in a mouse model[J]. J Orthop Res, 2018, 36(1):224-232. DOI:10.1002/jor.23634 . |
| [85] | ZHANG Y G, SUN Z M, LIU J T, et al. Features of intervertebral disc degeneration in rat's aging process[J]. J Zhejiang Univ Sci B, 2009, 10(7):522-527. DOI:10.1631/jzus.B0820295 . |
| [86] | CHOI H, TESSIER S, SILAGI E S, et al. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis[J]. Matrix Biol, 2018, 70:102-122. DOI:10.1016/j.matbio.2018.03.019 . |
| [87] | BOUHSINA N, DECANTE C, HARDEL J B, et al. Correlation between magnetic resonance, X-ray imaging alterations and histological changes in an ovine model of age-related disc degeneration[J]. Eur Cell Mater, 2021, 42:166-178. DOI:10.22203/eCM.v042a13 . |
| [88] | MARFIA G, CAMPANELLA R, NAVONE S E, et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration[J]. Arthritis Res Ther, 2014, 16(5):457. DOI:10.1186/s13075-014-0457-5 . |
| [89] | LEE S, JANG S H, SUZUKI-NARITA M, et al. Voluntary running attenuates behavioural signs of low back pain: dimorphic regulation of intervertebral disc inflammation in male and female SPARC-null mice[J]. Osteoarthritis Cartilage, 2022, 30(1):110-123. DOI:10.1016/j.joca.2021.06.014 . |
| [90] | GRUBER H E, SAGE E H, NORTON H J, et al. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse[J]. J Histochem Cytochem, 2005, 53(9):1131-1138. DOI:10.1369/jhc.5A6687.2005 . |
| [91] | HEY H W D, LAM W M R, CHAN C X, et al. Paraspinal myopathy-induced intervertebral disc degeneration and thoracolumbar kyphosis in TSC1mKO mice model-a preliminary study[J]. Spine J, 2022, 22(3):483-494. DOI:10.1016/j.spinee.2021.09.003 . |
| [92] | ASZÓDI A, CHAN D, HUNZIKER E, et al. Collagen Ⅱ is essential for the removal of the notochord and the formation of intervertebral discs[J]. J Cell Biol, 1998, 143(5):1399-1412. DOI:10.1083/jcb.143.5.1399 . |
| [93] | SAHLMAN J, INKINEN R, HIRVONEN T, et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type Ⅱ collagen[J]. Spine, 2001, 26(23):2558-2565. DOI:10.1097/00007632-200112010-00008 . |
| [94] | XU H H, DONG R, ZENG Q H, et al. Col9a2 gene deletion accelerates the degeneration of intervertebral discs[J]. Exp Ther Med, 2022, 23(3):207. DOI:10.3892/etm.2022.11130 . |
| [95] | BOYD L M, RICHARDSON W J, ALLEN K D, et al. Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type Ⅸ collagen[J]. Arthritis Rheum, 2008, 58(1):164-171. DOI:10.1002/art.23231 . |
| [96] | HAMRICK M W, PENNINGTON C, BYRON C D. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin)[J]. J Orthop Res, 2003, 21(6):1025-1032. DOI:10.1016/S0736-0266(03)00105-0 . |
| [97] | BEIERFUß A, DIETRICH H, KREMSER C, et al. Knockout of Apolipoprotein E in rabbit promotes premature intervertebral disc degeneration: a new in vivo model for therapeutic approaches of spinal disc disorders[J]. PLoS One, 2017, 12(11): e0187564. DOI:10.1371/journal.pone.0187564 . |
| [98] | BEIERFUß A, HUNJADI M, RITSCH A, et al. APOE-knockout in rabbits causes loss of cells in nucleus pulposus and enhances the levels of inflammatory catabolic cytokines damaging the intervertebral disc matrix[J]. PLoS One, 2019, 14(11): e0225527. DOI:10.1371/journal.pone.0225527 . |
| [99] | LI C G, LIANG Q Q, ZHOU Q, et al. A continuous observation of the degenerative process in the intervertebral disc of Smad3 gene knock-out mice[J]. Spine, 2009, 34(13):1363-1369. DOI:10.1097/BRS.0b013e3181a3c7c7 . |
| [100] | PHILLIPS K L E, JORDAN-MAHY N, NICKLIN M J H, et al. Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration[J]. Ann Rheum Dis, 2013, 72(11):1860-1867. DOI:10.1136/annrheumdis-2012-202266 . |
| [101] | WU W J, ZHANG X K, ZHENG X F, et al. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc[J]. Int J Immunopathol Pharmacol, 2013, 26(3):601-609. DOI:10.1177/039463201302600304 . |
| [102] | LUO Y, ZHANG L, WANG W Y, et al. Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats[J]. Bone, 2013, 55(2):439-448. DOI:10.1016/j.bone.2013.03.002 . |
| [103] | FENWICK N, GRIFFIN G, GAUTHIER C. The welfare of animals used in science: How the "Three Rs" ethic guides improvements[J]. Can Vet J, 2009, 50(5):523-530. |
| [104] | ZHOU L B, HUANG J J, LI C, et al. Organoids and organs-on-chips: recent advances, applications in drug development, and regulatory challenges[J]. Med, 2025, 6(4):100667. DOI:10.1016/j.medj.2025.100667 . |
| [105] | SON H G, HWANG M H, LEE S, et al. Intervertebral disc organ-on-a-chip: an innovative model to study monocyte extravasation during nucleus pulposus degeneration[J]. Lab Chip, 2023, 23(12):2819-2828. DOI:10.1039/d3lc00032j . |
| [1] | DING Tiansong, XIE Jinghong, YANG Bin, LI Heqiao, QIAO Yizhuo, CHEN Xinru, TIAN Wenfan, LI Jiapei, ZHANG Wanyi, LI Fanxuan. Characteristics Evaluation and Application Analysis on Animal Models of Recurrent Spontaneous Abortion [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 393-404. |
| [2] | Guangyuan YAO, Ping DONG, Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU. Research Progress on Animal Models of Long Bone Fractures [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. |
| [3] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||