Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (4): 422-431.DOI: 10.12300/j.issn.1674-5817.2024.170
• Animal Models of Human Diseases • Previous Articles Next Articles
ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen()(
)
Received:
2024-11-13
Revised:
2025-02-04
Online:
2025-08-25
Published:
2025-09-01
Contact:
LOU Yuefen
CLC Number:
ZHAO Xin,WANG Chenxi,SHI Wenqing,et al. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development[J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. DOI: 10.12300/j.issn.1674-5817.2024.170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.170
比较维度 Comparison dimension | TNBS小鼠模型 TNBS mouse model | DSS小鼠模型 DSS mouse model | TNBS斑马鱼模型 TNBS zebrafish model | DSS斑马鱼模型 DSS zebrafish model |
---|---|---|---|---|
造模方式 Modeling methods | 直肠内给药 | 饮用水添加 | 培养液中添加(幼鱼,受精后3~8 d)或直肠内给药(成年鱼,受精后≥90 d) | 培养液中添加(幼鱼,受精后3~8 d) |
疾病类型 Disease type | 克罗恩病 | 溃疡性结肠炎 | 克罗恩病 | 溃疡性结肠炎 |
肠道组织病理损伤 Intestinal histopathological damage | 肠壁全层炎症和溃疡,上皮细胞损伤,杯状细胞减少,隐窝破坏,可出现肠纤维化,见肠壁增厚,肉芽肿形成,浸润的炎性细胞以中性粒细胞为主 | 肠黏膜层炎症和溃疡,上皮细胞损伤,杯状细胞减少,隐窝破坏,浸润的炎性细胞以中性粒细胞为主 | 损伤不局限于肠道特定区域,可见中肠缩短、肠蠕动消失、肠道绒毛长度缩短、中性粒细胞浸润,杯状细胞变化不确定 | 中性粒细胞浸润,酸性黏液蛋白增多,肠壁增厚、肠黏膜结构破坏以及嗜酸性粒细胞浸润,杯状细胞减少 |
肠道微生物依赖 Intestinal microbiota dependence | 是 | 是 | 是 | 是 |
先天免疫 Innate immunity | 有 | 有 | 有 | 有 |
适应性免疫 Adaptive immunity | 有 | 有 | 无(幼鱼,受精后3~8 d), 有(成年鱼,受精后≥90 d) | 无 |
Table 1 Comparison of chemically induced colitis models in zebrafish and mice
比较维度 Comparison dimension | TNBS小鼠模型 TNBS mouse model | DSS小鼠模型 DSS mouse model | TNBS斑马鱼模型 TNBS zebrafish model | DSS斑马鱼模型 DSS zebrafish model |
---|---|---|---|---|
造模方式 Modeling methods | 直肠内给药 | 饮用水添加 | 培养液中添加(幼鱼,受精后3~8 d)或直肠内给药(成年鱼,受精后≥90 d) | 培养液中添加(幼鱼,受精后3~8 d) |
疾病类型 Disease type | 克罗恩病 | 溃疡性结肠炎 | 克罗恩病 | 溃疡性结肠炎 |
肠道组织病理损伤 Intestinal histopathological damage | 肠壁全层炎症和溃疡,上皮细胞损伤,杯状细胞减少,隐窝破坏,可出现肠纤维化,见肠壁增厚,肉芽肿形成,浸润的炎性细胞以中性粒细胞为主 | 肠黏膜层炎症和溃疡,上皮细胞损伤,杯状细胞减少,隐窝破坏,浸润的炎性细胞以中性粒细胞为主 | 损伤不局限于肠道特定区域,可见中肠缩短、肠蠕动消失、肠道绒毛长度缩短、中性粒细胞浸润,杯状细胞变化不确定 | 中性粒细胞浸润,酸性黏液蛋白增多,肠壁增厚、肠黏膜结构破坏以及嗜酸性粒细胞浸润,杯状细胞减少 |
肠道微生物依赖 Intestinal microbiota dependence | 是 | 是 | 是 | 是 |
先天免疫 Innate immunity | 有 | 有 | 有 | 有 |
适应性免疫 Adaptive immunity | 有 | 有 | 无(幼鱼,受精后3~8 d), 有(成年鱼,受精后≥90 d) | 无 |
[1] | ASHTON J J, BEATTIE R M. Inflammatory bowel disease: recent developments[J]. Arch Dis Child, 2024, 109(5):370-376. DOI:10.1136/archdischild-2023-325668 . |
[2] | XU L, HE B J, SUN Y X, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study[J]. Clin Gastroenterol Hepatol, 2023, 21(13): 3379-3386.e29. DOI:10.1016/j.cgh.2023.08.013 . |
[3] | SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10:1032679. DOI:10.3389/fpubh.2022.1032679 . |
[4] | KATSANDEGWAZA B, HORSNELL W, SMITH K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease[J]. Int J Mol Sci, 2022, 23(16):9344. DOI:10.3390/ijms23169344 . |
[5] | YANG H B, LUAN Y, LIU T T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish[J]. Nature, 2020, 588(7837): 337-343. DOI:10.1038/s41586-020-2962-9 . |
[6] | 章琳俐, 姚一琳, 初晓红, 等. 斑马鱼肠黏膜屏障的结构与组成[J].实验动物与比较医学, 2013, 33(2):112-116. DOI: 10.3969/j.issn.1674-5817.2013.02.006 . |
ZHANG L L, YAO Y L, CHU X H, et al. Structure and composition of intestinal mucosal barrier in zebrafish (Brachydanio rerio)[J]. Lab Anim Comp Med, 2013, 33(2):112-116. DOI: 10.3969/j.issn.1674-5817.2013.02.006 . | |
[7] | XIA H, CHEN H M, CHENG X, et al. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota[J]. Mol Med, 2022, 28(1):161. DOI:10.1186/s10020-022-00579-1 . |
[8] | FERGUSON M, FOLEY E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease[J]. FEBS J, 2022, 289(13):3666-3691. DOI:10.1111/febs.15910 . |
[9] | WILLMS R J, FOLEY E. Mechanisms of epithelial growth and development in the zebrafish intestine[J]. Biochem Soc Trans, 2023, 51(3):1213-1224. DOI:10.1042/BST20221375 . |
[10] | SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73:455-468. DOI:10.1146/annurev-med-042320-021020 . |
[11] | CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotechnol, 2022, 73:308-313. DOI:10.1016/j.copbio.2021.09.007 . |
[12] | ZHONG X T, LI J L, LU F R, et al. Application of zebrafish in the study of the gut microbiome[J]. Animal Model Exp Med, 2022, 5(4):323-336. DOI:10.1002/ame2.12227 . |
[13] | OEHLERS S H, FLORES M V, HALL C J, et al. Chemically induced intestinal damage models in zebrafish larvae[J]. Zebrafish, 2013, 10(2):184-193. DOI:10.1089/zeb.2012.0824 . |
[14] | BRUGMAN S, NIEUWENHUIS E E S. Oxazolone-induced intestinal inflammation in adult zebrafish[J]. Methods Mol Biol, 2017, 1559:311-318. DOI:10.1007/978-1-4939-6786-5_21 . |
[15] | FLEMING A, JANKOWSKI J, GOLDSMITH P. In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study[J]. Inflamm Bowel Dis, 2010, 16(7):1162-1172. DOI:10.1002/ibd. 21200 . |
[16] | OEHLERS S H, FLORES M V, OKUDA K S, et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents[J]. Dev Dyn, 2011, 240(1):288-298. DOI:10.1002/dvdy.22519 . |
[17] | OEHLERS S H, FLORES M V, HALL C J, et al. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis[J]. Dis Model Mech, 2012, 5(4):457-467. DOI:10.1242/dmm.009365 . |
[18] | ZHAO S Y, XIA J H, WU X H, et al. Deficiency in class Ⅲ PI3-kinase confers postnatal lethality with IBD-like features in zebrafish[J]. Nat Commun, 2018, 9(1):2639. DOI:10.1038/s41467-018-05105-8 . |
[19] | ZHAO Q, CHANG H, ZHENG J, et al. A novel Trmt5-deficient zebrafish model with spontaneous inflammatory bowel disease-like phenotype[J]. Signal Transduct Target Ther, 2023, 8(1): 86. DOI:10.1038/s41392-023-01318-6 . |
[20] | PARK S C, JEEN Y T. Genetic studies of inflammatory bowel disease-focusing on Asian patients[J]. Cells, 2019, 8(5):404. DOI:10.3390/cells8050404 . |
[21] | OEHLERS S H, FLORES M V, HALL C J, et al. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish[J]. Dis Model Mech, 2011, 4(6):832-841. DOI:10.1242/dmm.006122 . |
[22] | SIFUENTES-DOMINGUEZ L F, LI H Y, LLANO E, et al. SCGN deficiency results in colitis susceptibility[J]. eLife, 2019, 8: e49910. DOI:10.7554/eLife.49910 . |
[23] | KAYA B, DOÑAS C, WUGGENIG P, et al. Lysophosphatidic acid-mediated GPR35 signaling in CX3CR1+ macrophages regulates intestinal homeostasis[J]. Cell Rep, 2020, 32(5):107979. DOI:10.1016/j.celrep.2020.107979 . |
[24] | LAI C Y, YEH K Y, LIU B F, et al. microRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish[J]. Cancers, 2021, 13(21):5565. DOI:10.3390/cancers13215565 . |
[25] | MARJORAM L, ALVERS A, ELIZABETH DEERHAKE M, et al. Epigenetic control of intestinal barrier function and inflammation in zebrafish[J]. Proc Natl Acad Sci USA, 2015, 112(9):2770-2775. DOI:10.1073/pnas.1424089112 . |
[26] | BRUGMAN S, LIU K Y, LINDENBERGH-KORTLEVE D, et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota[J]. Gastroenterology, 2009, 137(5):1757-1767.e1. DOI:10.1053/j.gastro.2009.07.069 . |
[27] | KANTHER M, SUN X L, MÜHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1):197-207. DOI:10.1053/j.gastro. 2011.03.042 . |
[28] | THAKUR P C, DAVISON J M, STUCKENHOLZ C, et al. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish[J]. Dis Model Mech, 2014, 7(1):93-106. DOI:10.1242/dmm.012864 . |
[29] | VAN DER VAART M, VAN SOEST J J, SPAINK H P, et al. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system[J]. Dis Model Mech, 2013, 6(3):841-854. DOI:10.1242/dmm.010843 . |
[30] | SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611(7937):801-809. DOI:10.1038/s41586-022-05308-6 . |
[31] | DIAZ O E, SORINI C, MORALES R A, et al. Perfluoro-octanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation[J]. Dis Model Mech, 2021, 14(12): dmm049104. DOI:10.1242/dmm. 049104 . |
[32] | XIAO W, HU C Y, NI Y F, et al. 27-Hydroxycholesterol activates the GSK-3β/β-catenin signaling pathway resulting in intes-tinal fibrosis by inducing oxidative stress: effect of dietary interventions[J]. Inflamm Res, 2024, 73(2):289-304. DOI:10.1007/s00011-023-01835-8 . |
[33] | FLORES E, DUTTA S, BOSSERMAN R, et al. Colonization of larval zebrafish (Danio rerio) with adherent-invasive Escherichia coli prevents recovery of the intestinal mucosa from drug-induced enterocolitis[J]. mSphere, 2023, 8(6): e0051223. DOI:10.1128/msphere.00512-23 . |
[34] | RAMANAN D, BOWCUTT R, LEE S C, et al. Helminth infection promotes colonization resistance via type 2 immunity[J]. Science, 2016, 352(6285):608-612. DOI:10.1126/science.aaf3229 . |
[35] | HAARDER S, KANIA P W, HOLM T L, et al. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish[J]. Parasite Immunol, 2017, 39(10):e12456. DOI:10.1111/pim.12456 . |
[36] | REN X X, LIU Q Y, ZHOU P R, et al. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells[J]. Nat Commun, 2024, 15(1):3080. DOI:10.1038/s41467-024-47235-2 . |
[37] | HABJAN E, SCHOUTEN G K, SPEER A, et al. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment[J]. FEMS Microbiol Rev, 2024, 48(3): fuae011. DOI:10.1093/femsre/fuae011 . |
[38] | SILVA N V, CARREGOSA D, GONÇALVES C, et al. A dietary cholesterol-based intestinal inflammation assay for improving drug-discovery on inflammatory bowel diseases[J]. Front Cell Dev Biol, 2021, 9:674749. DOI:10.3389/fcell.2021. 674749 . |
[39] | SHENG Y, LI H L, LIU M J, et al. A manganese-superoxide dismutase from Thermus thermophilus HB27 suppresses inflammatory responses and alleviates experimentally induced colitis[J]. Inflamm Bowel Dis, 2019, 25(10):1644-1655. DOI:10.1093/ibd/izz097 . |
[40] | MOUSAVI T, HASSANI S, BAEERI M, et al. Comparison of the safety and efficacy of fingolimod and tofacitinib in the zebrafish model of colitis[J]. Food Chem Toxicol, 2022, 170:113509. DOI:10.1016/j.fct.2022.113509 . |
[41] | JEFREMOW A, NEURATH M F. Novel small molecules in IBD: current state and future perspectives[J]. Cells, 2023, 12(13):1730. DOI:10.3390/cells12131730 . |
[42] | HUANG X D, AI F, JI C, et al. A rapid screening method of candidate probiotics for inflammatory bowel diseases and the anti-inflammatory effect of the selected strain Bacillus smithii XY1[J]. Front Microbiol, 2021, 12:760385. DOI:10.3389/fmicb.2021.760385 . |
[43] | NAG D, FARR D, RAYCHAUDHURI S, et al. An adult zebrafish model for adherent-invasive Escherichia coli indicates protection from AIEC infection by probiotic E. coli Nissle[J]. iScience, 2022, 25(7):104572. DOI:10.1016/j.isci.2022.104572 . |
[44] | CHEN H J, LEI P Y, JI H, et al. Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish[J]. Life Sci, 2023, 329:121956. DOI:10.1016/j.lfs.2023.121956 . |
[45] | CHEN M, LIU C, DAI M Z, et al. Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models[J]. PLoS One, 2022, 17(2): e0262942. DOI:10.1371/journal.pone.0262942 . |
[46] | YU Y R, CHEN J, ZHANG X H, et al. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases[J]. Chin Med, 2021, 16(1):42. DOI:10.1186/s13020-021-00452-z . |
[47] | JIA D S, TIAN X, CHEN Y T, et al. Preparation of enzymatic hydrolysates of mulberry leaf flavonoids and investigation into its treatment and mechanism for zebrafish inflammatory bowel disease[J]. Fish Shellfish Immunol, 2024, 154:109960. DOI:10.1016/j.fsi.2024.109960 . |
[48] | LI Y, LIU X J, SU S L, et al. Evaluation of anti-inflammatory and antioxidant effectsof Chrysanthemum stem and leaf extract on zebrafish inflammatory bowel disease model[J]. Molecules, 2022, 27(7):2114. DOI:10.3390/molecules27072114 . |
[1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
[2] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
[3] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
[4] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
[5] | LUO Shixiong, ZHANG Sai, CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. |
[6] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
[7] | WU Zhihao, CAO Shuyang, ZHOU Zhengyu. Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 37-46. |
[8] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
[9] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[10] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
[11] | TIAN Fang, PAN Bin, SHI Jiayi, XU Yanyi, LI Weihua. Advances in Development of PM2.5-Exposed Animal Models and Their Application in Reproductive Toxicity Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 626-635. |
[12] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[13] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[14] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[15] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||